In my last change I made sure that the signal as reported from a truss
exit is the same as if truss wasn't between parent and trussed
program. I was smart enough to not have it coredump on SIGQUIT but it
didn't ocur to me SIGSEGV might cause a coredump, too :-)
So get rid of SIGQUIT extra hack and limit coredumpsize to zero
instead.
Tested: still works, correct signal reported. No more codedumps from
SIGSEGV in the trussed proces. This file compiles cleanly on AMD64
(sledge).
PR:
Submitted by:
Reviewed by:
Approved by:
Obtained from:
MFC after:
is that fseeko() fails in very predictable and frequent ways on ia64.
This is because the offset is actually an address in the process'
address space, which on ia64 can be larger than long (for lseek) or
off_t (for fseeko). The crux is the signedness. The register stack
and memory stack are in region 4 on ia64. This means that the sign bit
is 1. The large positive virtual address is wrongly interpreted as
a negative file offset.
There's no quick fix. Even if you get around the API by using a
SEEK_SET up to LONG_MAX and follow it up with a SEEK_CUR for the
remainder, the kernel simply cannot deal with it. and the second
seek will just fail.
Therefore, this change does not actually fix the root cause. It just
makes sure we're not spitting out all kinds of garbage or that the
get_struct() function in particular does not cause truss(1) to exit.
This, I might add, invariably happened way too soon for truss(1) to
be of any use on ia64...
o Syscall return values do not fit in int on 64-bit architectures.
Change the type of retval in <arch>_syscall_exit() to long and
change the prototype of said function to return a long as well.
o Change the prototype of print_syscall_ret() to take a long for
the return address and change the format string accordingly.
o Replace the code sequence
tmp = malloc(X);
sprintf(tmp, format, ...);
with X by definition too small on 64-bit platforms by
asprintf(&tmp, format, ...);
With these changes the output makes sense again, although it does
mess up the tabulation on ia64. Go widescreen...
Not tested on: alpha, sparc64.
frame, occupying scratch registers r16 and up. We don't have to
save any scratch registers for syscalls, so we have plenty of
room there. Consequently, when we fetch the registers from the
process, we automaticly have all the arguments and don't need
to read them seperately.
prime objectives are:
o Implement a syscall path based on the epc inststruction (see
sys/ia64/ia64/syscall.s).
o Revisit the places were we need to save and restore registers
and define those contexts in terms of the register sets (see
sys/ia64/include/_regset.h).
Secundairy objectives:
o Remove the requirement to use contigmalloc for kernel stacks.
o Better handling of the high FP registers for SMP systems.
o Switch to the new cpu_switch() and cpu_throw() semantics.
o Add a good unwinder to reconstruct contexts for the rare
cases we need to (see sys/contrib/ia64/libuwx)
Many files are affected by this change. Functionally it boils
down to:
o The EPC syscall doesn't preserve registers it does not need
to preserve and places the arguments differently on the stack.
This affects libc and truss.
o The address of the kernel page directory (kptdir) had to
be unstaticized for use by the nested TLB fault handler.
The name has been changed to ia64_kptdir to avoid conflicts.
The renaming affects libkvm.
o The trapframe only contains the special registers and the
scratch registers. For syscalls using the EPC syscall path
no scratch registers are saved. This affects all places where
the trapframe is accessed. Most notably the unaligned access
handler, the signal delivery code and the debugger.
o Context switching only partly saves the special registers
and the preserved registers. This affects cpu_switch() and
triggered the move to the new semantics, which additionally
affects cpu_throw().
o The high FP registers are either in the PCB or on some
CPU. context switching for them is done lazily. This affects
trap().
o The mcontext has room for all registers, but not all of them
have to be defined in all cases. This mostly affects signal
delivery code now. The *context syscalls are as of yet still
unimplemented.
Many details went into the removal of the requirement to use
contigmalloc for kernel stacks. The details are mostly CPU
specific and limited to exception_save() and exception_restore().
The few places where we create, destroy or switch stacks were
mostly simplified by not having to construct physical addresses
and additionally saving the virtual addresses for later use.
Besides more efficient context saving and restoring, which of
course yields a noticable speedup, this also fixes the dreaded
SMP bootup problem as a side-effect. The details of which are
still not fully understood.
This change includes all the necessary backward compatibility
code to have it handle older userland binaries that use the
break instruction for syscalls. Support for break-based syscalls
has been pessimized in favor of a clean implementation. Due to
the overall better performance of the kernel, this will still
be notived as an improvement if it's noticed at all.
Approved by: re@ (jhb)
1) Missing include.
2) Constness.
3) ANSIfication.
4) Avoid some shadowing.
5) Add/clarify some error messages.
6) Some int functions were using return without a value.
7) Mark some parameters as unused.
8) Cast a value we know is non-negative to a size_t before comparing.
depend on namespace pollution in <signal.h>. (truss shouldn't be
using timevals anyway, since it was implemented long after timevals
were obsoleted by timespecs.)
stdout. Unfortunately, DES mfc'ed this change in 1.15.2.1 (this
part probably should not have been) so it is broken there too.
truss is documented to use stderr, and other implementations use stderr.
Submitted by: Arne Dag Fidjestøl <adf@idi.ntnu.no>
breakage with ioctl.c. The .depend file should track dependencies
just fine, and the worst we can have is to miss new ioctls.
But I still think it's a good idea to have -DNOCLEAN build produce
the same ioctl.c as it would without -DNOCLEAN.
Prodded for a long time by: bde
AF_INET6 and AF_UNIX sockaddrs, and will recognize accept(), bind(),
connect(), getpeername() and getsockname() as syscalls taking sockaddr
arguments. Some enterprising soul might want to add (and test) support
for the send() / recv() family of syscalls as well.
MFC after: 1 week
since it could potentially depend on any ${DESTDIR}/usr/include
preprocessor file. This fixes the broken -DNOCLEAN world build
I experienced yesterday.
the string "FreeBSD". Use the .Fx macro instead. Also did some
minor re-wording/formatting to work around a deficiency with
the .Fx macro when it comes to puncuation characters other than
periods and commas.
to wake up any processes waiting via PIOCWAIT on process exit, and truss
needs to be more aware that a process may actually disappear while it's
waiting.
Reviewed by: Paul Saab <ps@yahoo-inc.com>
All Makefiles now use MACHINE_ARCH for the target architecture.
Unification is required for cross-building.
Tags added to:
sys/boot/Makefile
sys/boot/arc/loader/Makefile
sys/kern/Makefile
usr.bin/cpp/Makefile
usr.bin/gcore/Makefile
usr.bin/truss/Makefile
usr.bin/gcore/Makefile:
fixed typo: MACHINDE -> MACHINE_ARCH
execvp() in the child branch of a vfork(). Changed to use fork()
instead.
Some of these (mv, find, apply, xargs) might benefit greatly from
being rewritten to use vfork() properly.
PR: Loosely related to bin/8252
Approved by: jkh and bde
some header files (e.g., <err.h>) include <machine/something.h>, and this
will not pick up the right header files, so it may be removed eventually
anyway. But some people who are not willing to build the right way
apparantly want this, so this is for them.
anything other than <sys/*.h>), and unnecessary in most cases. (The
situations where it is necesary can be dealt with by manually-made symlinks,
which is acceptable since they should only occur during testing. Remember:
the tree does not compile well if you do not have matching header files
installed. Half-baked -I directives don't cover enough of the cases.)
Correct usage: one of {-p pid, command} is required.
Open output file when command line is fully analyzed: incorrect `truss -o f'
command does not create an empty file anymore.
change from
ioctl(fd, PIOC<foo>, &i);
to
ioctl(fd, PIOC<foo>, i);
This is going from the _IOW to _IO ioctl macro. The kernel, procctl, and
truss must be in synch for it all to work (not doing so will get errors about
inappropriate ioctl's, fortunately). Hopefully I didn't forget anything :).
said process will not have its event mask cleared (and be restarted) on
the last close of a procfs/mem file for that pid. This reduces the chance
that a truss-monitored process will be left hanging with these bits set
and nobody looking for it.
This is the least-tested change of all of these, I'm afraid.