PCPU_LAZY_INC() which increments elements in it for cases where we
can afford the occassional inaccuracy. Use of per-cpu stats counters
avoids significant cache stalls in various critical paths that would
otherwise severely limit our cpu scaleability.
Adjust all sysctl's accessing cnt.* elements to now use a procedure
which aggregates the requested field for all cpus and for the global
vmmeter.
The global vmmeter is retained, since some stats counters, like v_free_min,
cannot be made per-cpu. Also, this allows us to convert counters from
the global vmmeter to the per-cpu vmmeter in a piecemeal fashion, so
have at it!
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
In the i386 case, options BOOTP requires options NFS_ROOT as well as
options NFSCLIENT. With *both* the NFS options, a bootpc_init()
prototype is brought in by nfsclient/nfsdiskless.h.
In the ia64 case, it just doesn't work and my change just pushes it
further away from working.
Suggested to be wrong by: bde
they aren't in the usual path of execution for syscalls and traps.
The main complication for this is that we have to set flags to control
ast() everywhere that changes the signal mask.
Avoid locking in userret() in most of the remaining cases.
Submitted by: luoqi (first part only, long ago, reorganized by me)
Reminded by: dillon
Unfortunately, this level doesn't really provide enough granularity. We
probably need several MI NOTES type files for things that are shared by
several architectures but not by all. For example, the PCI options could
live in a NOTES.pci.
This also updates the Makefile for i386 to generate LINT. The only changes
in the generated LINT are the order of various options.
Suggestions for improvement welcome.
in dump byte order (=network byte order). Swap blocksize and dumptime
to avoid extraneous padding on 64-bit architectures. Use CTASSERT
instead of runtime checks to make sure the header is 512 bytes large.
Various style(9) fixes.
Reviewed by: phk, bde, mike
various machdep.c's to being declared in kern_mutex.c.
- Add a new function mutex_init() used to perform early initialization
needed for mutexes such as setting up thread0's contested lock list
and initializing MI mutexes. Change the various MD startup routines
to call this function instead of duplicating all the code themselves.
Tested on: alpha, i386
and cpu_critical_exit() and moves associated critical prototypes into their
own header file, <arch>/<arch>/critical.h, which is only included by the
three MI source files that need it.
Backout and re-apply improperly comitted syntactical cleanups made to files
that were still under active development. Backout improperly comitted program
structure changes that moved localized declarations to the top of two
procedures. Partially re-apply one of the program structure changes to
move 'mask' into an intermediate block rather then in three separate
sub-blocks to make the code more readable. Re-integrate bug fixes that Jake
made to the sparc64 code.
Note: In general, developers should not gratuitously move declarations out
of sub-blocks. They are where they are for reasons of structure, grouping,
readability, compiler-localizability, and to avoid developer-introduced bugs
similar to several found in recent years in the VFS and VM code.
Reviewed by: jake
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
Caveats:
The new savecore program is not complete in the sense that it emulates
enough of the old savecores features to do the job, but implements none
of the options yet.
I would appreciate if a userland hacker could help me out getting savecore
to do what we want it to do from a users point of view, compression,
email-notification, space reservation etc etc. (send me email if
you are interested).
Currently, savecore will scan all devices marked as "swap" or "dump" in
/etc/fstab _or_ any devices specified on the command-line.
All architectures but i386 lack an implementation of dumpsys(), but
looking at the i386 version it should be trivial for anybody familiar
with the platform(s) to provide this function.
Documentation is quite sparse at this time, more to come.
Details:
ATA and SCSI drivers should work as the dump formatting code has been
removed. The IDA, TWE and AAC have not yet been converted.
Dumpon now opens the device and uses ioctl(DIOCGKERNELDUMP) to set
the device as dumpdev. To implement the "off" argument, /dev/null
is used as the device.
Savecore will fail if handed any options since they are not (yet)
implemented. All devices marked "dump" or "swap" in /etc/fstab
will be scanned and dumps found will be saved to diskfiles
named from the MD5 hash of the header record. The header record
is dumped in readable format in the .info file. The kernel
is not saved. Only complete dumps will be saved.
All maintainer rights for this code are disclaimed: feel free to
improve and extend.
Sponsored by: DARPA, NAI Labs
the osigcontext or ucontext_t rather than useracc() followed by direct user-
space memory accesses. This reduces (o)sigreturn()'s execution time by 5-
50%.
Submitted by: bde
with this flag. Remove the dup_list and dup_ok code from subr_witness. Now
we just check for the flag instead of doing string compares.
Also, switch the process lock, process group lock, and uma per cpu locks over
to this interface. The original mechanism did not work well for uma because
per cpu lock names are unique to each zone.
Approved by: jhb
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
not removing tabs before "__P((", and not outdenting continuation lines
to preserve non-KNF lining up of code with parentheses. Switch to KNF
formatting and/or rewrap the whole prototype in some cases.
not removing tabs before "__P((", and not outdenting continuation lines
to preserve non-KNF lining up of code with parentheses. Switch to KNF
formatting and/or rewrap the whole prototype in some cases.
not removing tabs before "__P((", and not outdenting continuation lines
to preserve non-KNF lining up of code with parentheses. Switch to KNF
formatting and/or rewrap the whole prototype in some cases.
Instead of caching the ucred reference, just go ahead and eat the
decerement and increment of the refcount. Now that Giant is pushed down
into crfree(), we no longer have to get Giant in the common case. In the
case when we are actually free'ing the ucred, we would normally free it on
the next kernel entry, so the cost there is not new, just in a different
place. This also removse td_cache_ucred from struct thread. This is
still only done #ifdef DIAGNOSTIC.
Tested on: i386, alpha
to copy the sigframe to the user's stack. Useracc() takes a non-trivial
amount of time. Eliminating it speeds up signal delivery by 15% or more.
o Update some comments.
Submitted by: bde
older PCI BIOSes hate this and this leads to panics when it is done. Also,
assume that a uniquely routed interrupt is already routed. This also
seems to help some older laptops with feable BIOSes cope.
machdep.guessed_bootdev, and add code to sysctl to parse its value
and give a (not necessarily correct) name to the device we booted
from (the main motivation for this code is to use the info in the
PicoBSD boot scripts, and the impact on the kernel is minimal).
NOTE: the information available in bootdev is not always reliable,
so you should not trust it too much. The parsing code is the same
as in boot2.c, and cannot cover all cases -- as it is, it seems to
work fine with floppies and IDE disks recognised by the BIOS. It
_should_ work as well with SCSI disks recognised by the BIOS.
Booting from a CDROM in floppy emulation will return /dev/fd0 (because
this is what the BIOS tells us).
Booting off the network (e.g. with etherboot) leaves bootdev unset so
the value will be printed as "invalid (0xffffffff)".
Finally, this feature might go away at some point, hopefully when we
have a more reliable way to get the same information.
MFC-after: 5 days
be allocated as arrays indexed by the cpu id. Previously the only reliable
way to know the max cpu id was through MAXCPU. mp_ncpus isn't useful here
because cpu ids may be sparsely mapped, although x86 and alpha do not do this.
Also, call cpu_mp_probe much earlier so the max cpu id is known before the VM
starts up. This is intended to help support per cpu queues for the new
allocator, but may be useful elsewhere.
Reviewed by: jake
Approved by: jake
This makes other power-management system (APM for now) to be able to
generate power profile change events (ie. AC-line status changes), and
other kernel components, not only the ACPI components, can be notified
the events.
- move subroutines in acpi_powerprofile.c (removed) to kern/subr_power.c
- call power_profile_set_state() also from APM driver when AC-line
status changes
- add call-back function for Crusoe LongRun controlling on power
profile changes for a example
Previously, the UPAGES/KSTACK area of processes/threads would leak memory
at the time that a previously swapped process was terminated. Lukcily, the
leak was only 12K/proc, so it was unlikely to be a major problem unless you
had an undersized swap partition.
Submitted by: dillon
Reviewed by: silby
MFC after: 1 week
In order to determine what to page out, the vm_daemon checks
reference bits on all pages belonging to all processes. Unfortunately,
the algorithm used reacted badly with shared pages; each shared page
would be checked once per process sharing it; this caused an O(N^2)
growth of tlb invalidations. The algorithm has been changed so that
each page will be checked only 16 times.
Prior to this change, a fork/sleepbomb of 1300 processes could cause
the vm_daemon to take over 60 seconds to complete, effectively
freezing the system for that time period. With this change
in place, the vm_daemon completes in less than a second. Any system
with hundreds of processes sharing pages should benefit from this change.
Note that the vm_daemon is only run when the system is under extreme
memory pressure. It is likely that many people with loaded systems saw
no symptoms of this problem until they reached the point where swapping
began.
Special thanks go to dillon, peter, and Chuck Cranor, who helped me
get up to speed with vm internals.
PR: 33542, 20393
Reviewed by: dillon
MFC after: 1 week
device drivers for bus system with other endinesses than the CPU (using
interfaces compatible to NetBSD):
- bwap16() and bswap32(). These have optimized implementations on some
architectures; for those that don't, there exist generic implementations.
- macros to convert from a certain byte order to host byte order and vice
versa, using a naming scheme like le16toh(), htole16().
These are implemented using the bswap functions.
- stream bus space access functions, which do not perform a byte order
conversion (while the normal access functions would if the bus endianess
differs from the CPU endianess).
htons(), htonl(), ntohs() and ntohl() are implemented using the new
functions above for kernel usage. None of the above interfaces is currently
exported to user land.
Make use of the new functions in a few places where local implementations
of the same functionality existed.
Reviewed by: mike, bde
Tested on alpha by: mike
There is some unresolved badness that has been eluding me, particularly
affecting uniprocessor kernels. Turning off PG_G helped (which is a bad
sign) but didn't solve it entirely. Userland programs still crashed.
boot and run (and indeed I am committing from it) instead of exploding
during the int 0x15 call from inside the atkbd driver to get the keyboard
repeat rates.
shootdowns in a couple of key places. Do the same for i386. This also
hides some physical addresses from higher levels and has it use the
generic vm_page_t's instead. This will help for PAE down the road.
Obtained from: jake (MI code, suggestions for MD part)
enabled in critical sections and streamline critical_enter() and
critical_exit().
This commit allows an architecture to leave interrupts enabled inside
critical sections if it so wishes. Architectures that do not wish to do
this are not effected by this change.
This commit implements the feature for the I386 architecture and provides
a sysctl, debug.critical_mode, which defaults to 1 (use the feature). For
now you can turn the sysctl on and off at any time in order to test the
architectural changes or track down bugs.
This commit is just the first stage. Some areas of the code, specifically
the MACHINE_CRITICAL_ENTER #ifdef'd code, is strictly temporary and will
be cleaned up in the STAGE-2 commit when the critical_*() functions are
moved entirely into MD files.
The following changes have been made:
* critical_enter() and critical_exit() for I386 now simply increment
and decrement curthread->td_critnest. They no longer disable
hard interrupts. When critical_exit() decrements the counter to
0 it effectively calls a routine to deal with whatever interrupts
were deferred during the time the code was operating in a critical
section.
Other architectures are unaffected.
* fork_exit() has been conditionalized to remove MD assumptions for
the new code. Old code will still use the old MD assumptions
in regards to hard interrupt disablement. In STAGE-2 this will
be turned into a subroutine call into MD code rather then hardcoded
in MI code.
The new code places the burden of entering the critical section
in the trampoline code where it belongs.
* I386: interrupts are now enabled while we are in a critical section.
The interrupt vector code has been adjusted to deal with the fact.
If it detects that we are in a critical section it currently defers
the interrupt by adding the appropriate bit to an interrupt mask.
* In order to accomplish the deferral, icu_lock is required. This
is i386-specific. Thus icu_lock can only be obtained by mainline
i386 code while interrupts are hard disabled. This change has been
made.
* Because interrupts may or may not be hard disabled during a
context switch, cpu_switch() can no longer simply assume that
PSL_I will be in a consistent state. Therefore, it now saves and
restores eflags.
* FAST INTERRUPT PROVISION. Fast interrupts are currently deferred.
The intention is to eventually allow them to operate either while
we are in a critical section or, if we are able to restrict the
use of sched_lock, while we are not holding the sched_lock.
* ICU and APIC vector assembly for I386 cleaned up. The ICU code
has been cleaned up to match the APIC code in regards to format
and macro availability. Additionally, the code has been adjusted
to deal with deferred interrupts.
* Deferred interrupts use a per-cpu boolean int_pending, and
masks ipending, spending, and fpending. Being per-cpu variables
it is not currently necessary to lock; bus cycles modifying them.
Note that the same mechanism will enable preemption to be
incorporated as a true software interrupt without having to
further hack up the critical nesting code.
* Note: the old critical_enter() code in kern/kern_switch.c is
currently #ifdef to be compatible with both the old and new
methodology. In STAGE-2 it will be moved entirely to MD code.
Performance issues:
One of the purposes of this commit is to enhance critical section
performance, specifically to greatly reduce bus overhead to allow
the critical section code to be used to protect per-cpu caches.
These caches, such as Jeff's slab allocator work, can potentially
operate very quickly making the effective savings of the new
critical section code's performance very significant.
The second purpose of this commit is to allow architectures to
enable certain interrupts while in a critical section. Specifically,
the intention is to eventually allow certain FAST interrupts to
operate rather then defer.
The third purpose of this commit is to begin to clean up the
critical_enter()/critical_exit()/cpu_critical_enter()/
cpu_critical_exit() API which currently has serious cross pollution
in MI code (in fork_exit() and ast() for example).
The fourth purpose of this commit is to provide a framework that
allows kernel-preempting software interrupts to be implemented
cleanly. This is currently used for two forward interrupts in I386.
Other architectures will have the choice of using this infrastructure
or building the functionality directly into critical_enter()/
critical_exit().
Finally, this commit is designed to greatly improve the flexibility
of various architectures to manage critical section handling,
software interrupts, preemption, and other highly integrated
architecture-specific details.
on for a while:
- fine grained TLB shootdown for SMP on i386
- ranged TLB shootdowns.. eg: specify a range of pages to shoot down with
a single IPI, since the IPI is very expensive. Adjust some callers
that used to trigger this inside tight loops to do a ranged shootdown
at the end instead.
- PG_G support for SMP on i386 (options ENABLE_PG_G)
- defer PG_G activation till after we decide what we are going to do with
PSE and the 4MB pages at the start of the kernel. This should solve
some rumored strangeness about stale PG_G entries getting stuck
underneath the 4MB pages.
- add some instrumentation for the fine TLB shootdown
- convert some asm instruction wrappers from functions to inlines. gcc
seems to do a fair bit better with this.
- [temporarily!] pessimize the tlb shootdown IPI handlers. I will fix
this again shortly.
This has been working fairly well for me for a while, but I have tweaked
it again prior to commit since my last major testing round. The only
outstanding problem that I know of is PG_G related, which is why there
is an option for it (not on by default for SMP). I have seen a world
speedups by a few percent (as much as 4 or 5% in one case) but I have
*not* accurately measured this - I am a bit sceptical of these numbers.
While in userland, keep the thread's ucred reference in a shadow
field so that the usual place to store it is NULL.
If DIAGNOSTIC is not set, the thread ucred is kept valid until the next
kernel entry, at which time it is checked against the process cred
and possibly corrected. Produces a BIG speedup in
kernels with INVARIANTS set. (A previous commit corrected it
for the non INVARIANTS case already)
Reviewed by: dillon@freebsd.org
ucontext_t. Forward declare struct __ucontext in <sys/signal.h> and
remove reliance on <sys/ucontext.h> being included.
While I'm here, also hide osigcontext types from userland; suggested
by bde.
Namespace pollution noticed by: Kevin Day <toasty@shell.dragondata.com>
reaquiring it. In the same vein, don't bother dropping the thread cred
when goinf ot userland. We are guaranteed to nned it when we come back,
(which we are guaranteed to do).
Reviewed by: jhb@freebsd.org, bde@freebsd.org (slightly different version)
SMP we'd like as much feedback as possible from users about possible
locking problems as early as possible.
To negate most of the performance impact I've also enabled
WITNESS_SKIPSPIN. I've done this as we've been running WITNESS
over the spinlock code for a while without incident and it goes a
long way to making the performance problems of WITNESS much more
bearable.
Users who should be running current should know about turning WITNESS
off for performance reasons.
That said and done, WITNESS could/should be made into a tuneable,
but we'll leave that as an excersize to those that want to disable
it without a kernel recompile.
slower, and may be impeding adoption of -CURRENT by developers. We
recommend turning on WITNESS by default on crash boxes, and when doing
locking development. It will probably get turned on by default for a week
or two following any major locking commits, also.
Approved by: all and sundry (jhb, phk, ...)
feature bit on newer Athlon CPUs if the BIOS has forgotten to enable
it.
This patch was constructed using some info made available by John
Clemens at http://www.deater.net/john/PavilionN5430.html
Reviewed by: -audit
MFC after: 3 weeks
- Collected i486 identification codes in one place like
586 and 686.
- Merged two cases (0x470 and 0x490) for `Enhanced Am486DX4
Write-Back.'
- Replaced `unknown' into `Unknown'.
Submitted by: chi@bd.mbn.or.jp (Chiharu Shibata)
this is a low-functionality change that changes the kernel to access the main
thread of a process via the linked list of threads rather than
assuming that it is embedded in the process. It IS still embeded there
but remove all teh code that assumes that in preparation for the next commit
which will actually move it out.
Reviewed by: peter@freebsd.org, gallatin@cs.duke.edu, benno rice,