Commit Graph

5 Commits

Author SHA1 Message Date
bmilekic
f364d4ac36 Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:

mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)

similarily, for releasing a lock, we now have:

mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.

The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.

Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:

MTX_QUIET and MTX_NOSWITCH

The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:

mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.

Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.

Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.

Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.

Finally, caught up to the interface changes in all sys code.

Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
tanimura
016329311e - Move ifs_init() so that it can initialize ifs_inode_hash_mtx.
- s/ffs_inode_hash_lock/ifs_inode_hash_lock/
2000-12-14 09:15:27 +00:00
tanimura
635b424e75 Do not race for the lock of an inode hash.
Reviewed by:	jhb
2000-12-13 10:04:01 +00:00
phk
f82e4ca62c Weaken a bogus dependency on <sys/proc.h> in <sys/buf.h> by #ifdef'ing
the offending inline function (BUF_KERNPROC) on it being #included
already.

I'm not sure BUF_KERNPROC() is even the right thing to do or in the
right place or implemented the right way (inline vs normal function).

Remove consequently unneeded #includes of <sys/proc.h>
2000-10-29 14:54:55 +00:00
adrian
0458054c4e Initial commit of IFS - a inode-namespaced FFS. Here is a short
description:

How it works:
--

Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.)
I didn't see the need in duplicating all of sys/ufs/ffs to get this
off the ground.

File creation is done through a special file - 'newfile' . When newfile
is called, the system allocates and returns an inode. Note that newfile
is done in a cloning fashion:

fd = open("newfile", O_CREAT|O_RDWR, 0644);
fstat(fd, &st);

printf("new file is %d\n", (int)st.st_ino);

Once you have created a file, you can open() and unlink() it by its returned
inode number retrieved from the stat call, ie:

fd = open("5", O_RDWR);

The creation permissions depend entirely if you have write access to the
root directory of the filesystem.

To get the list of currently allocated inodes, VOP_READDIR has been added
which returns a directory listing of those currently allocated.

--

What this entails:

* patching conf/files and conf/options to include IFS as a new compile
  option (and since ifs depends upon FFS, include the FFS routines)

* An entry in i386/conf/NOTES indicating IFS exists and where to go for
  an explanation

* Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS
  routines require (ffs_mount() and ffs_reload())

* a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS
  routines. IFS replaces some of the vfsops, and a handful of vnops -
  most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR().
  Any other directory operation is marked as invalid.

What this results in:

* an IFS partition's create permissions are controlled by the perm/ownership of
  the root mount point, just like a normal directory

* Each inode has perm and ownership too

* IFS does *NOT* mean an FFS partition can be opened per inode. This is a
  completely seperate filesystem here

* Softupdates doesn't work with IFS, and really I don't think it needs it.
  Besides, fsck's are FAST. (Try it :-)

* Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC).
  Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against
  this particular inode, and unravelling THAT code isn't trivial. Therefore,
  useful inodes start at 3.

Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00