- Add flags CVWAIT_ABSTIME and CVWAIT_CLOCKID for umtx kernel based
condition variable, this should eliminate an extra system call to get
current time.
- Add sub-function UMTX_OP_NWAKE_PRIVATE to wake up N channels in single
system call. Create userland sleep queue for condition variable, in most
cases, thread will wait in the queue, the pthread_cond_signal will defer
thread wakeup until the mutex is unlocked, it tries to avoid an extra
system call and a extra context switch in time window of pthread_cond_signal
and pthread_mutex_unlock.
The changes are part of process-shared mutex project.
same null value, the code can not distinguish between them, to
fix the problem, now a destroyed object is assigned to a non-null
value, and it will be rejected by some pthread functions.
PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP is changed to number 1, so that
adaptive mutex can be statically initialized correctly.
some cases we want to improve:
1) if a thread signal got a signal while in cancellation point,
it is possible the TDP_WAKEUP may be eaten by signal handler
if the handler called some interruptibly system calls.
2) In signal handler, we want to disable cancellation.
3) When thread holding some low level locks, it is better to
disable signal, those code need not to worry reentrancy,
sigprocmask system call is avoided because it is a bit expensive.
The signal handler wrapper works in this way:
1) libthr installs its signal handler if user code invokes sigaction
to install its handler, the user handler is recorded in internal
array.
2) when a signal is delivered, libthr's signal handler is invoke,
libthr checks if thread holds some low level lock or is in critical
region, if it is true, the signal is buffered, and all signals are
masked, once the thread leaves critical region, correct signal
mask is restored and buffered signal is processed.
3) before user signal handler is invoked, cancellation is temporarily
disabled, after user signal handler is returned, cancellation state
is restored, and pending cancellation is rescheduled.
which does not know what is the state of interrupted system call, for
example, open() system call opened a file and the thread is still cancelled,
result is descriptor leak, there are other problems which can cause resource
leak or undeterminable side effect when a thread is cancelled. However, this
is no longer true in new implementation.
In defering mode, a thread is canceled if cancellation request is pending and
later the thread enters a cancellation point, otherwise, a later
pthread_cancel() just causes SIGCANCEL to be sent to the target thread, and
causes target thread to abort system call, userland code in libthr then checks
cancellation state, and cancels the thread if needed. For example, the
cancellation point open(), the thread may be canceled at start,
but later, if it opened a file descriptor, it is not canceled, this avoids
file handle leak. Another example is read(), a thread may be canceled at start
of the function, but later, if it read some bytes from a socket, the thread
is not canceled, the caller then can decide if it should still enable cancelling
or disable it and continue reading data until it thinks it has read all
bytes of a packet, and keeps a protocol stream in health state, if user ignores
partly reading of a packet without disabling cancellation, then second iteration
of read loop cause the thread to be cancelled.
An exception is that the close() cancellation point always closes a file handle
despite whether the thread is cancelled or not.
The old mechanism is still kept, for a functions which is not so easily to
fix a cancellation problem, the rough mechanism is used.
Reviewed by: kib@
_thr_ucond_broadcast, clear condition variable pointer in cancellation
info after returing from _thr_ucond_wait, since kernel has already
dropped the internal lock, so we don't need to unlock it in cancellation
handler again.
1. fast simple type mutex.
2. __thread tls works.
3. asynchronous cancellation works ( using signal ).
4. thread synchronization is fully based on umtx, mainly, condition
variable and other synchronization objects were rewritten by using
umtx directly. those objects can be shared between processes via
shared memory, it has to change ABI which does not happen yet.
5. default stack size is increased to 1M on 32 bits platform, 2M for
64 bits platform.
As the result, some mysql super-smack benchmarks show performance is
improved massivly.
Okayed by: jeff, mtm, rwatson, scottl
pointer to the corresponding struct thread to the thread ID (lwpid_t)
assigned to that thread. The primary reason for this change is that
libthr now internally uses the same ID as the debugger and the kernel
when referencing to a kernel thread. This allows us to implement the
support for debugging without additional translations and/or mappings.
To preserve the ABI, the 1:1 threading syscalls, including the umtx
locking API have not been changed to work on a lwpid_t. Instead the
1:1 threading syscalls operate on long and the umtx locking API has
not been changed except for the contested bit. Previously this was
the least significant bit. Now it's the most significant bit. Since
the contested bit should not be tested by userland, this change is
not expected to be visible. Just to be sure, UMTX_CONTESTED has been
removed from <sys/umtx.h>.
Reviewed by: mtm@
ABI preservation tested on: i386, ia64
followed are: Only 3 functions (pthread_cancel, pthread_setcancelstate,
pthread_setcanceltype) are required to be async-signal-safe by POSIX. None of
the rest of the pthread api is required to be async-signal-safe. This means
that only the three mentioned functions are safe to use from inside
signal handlers.
However, there are certain system/libc calls that are
cancellation points that a caller may call from within a signal handler,
and since they are cancellation points calls have to be made into libthr
to test for cancellation and exit the thread if necessary. So, the
cancellation test and thread exit code paths must be async-signal-safe
as well. A summary of the changes follows:
o Almost all of the code paths that masked signals, as well as locking the
pthread structure now lock only the pthread structure.
o Signals are masked (and left that way) as soon as a thread enters
pthread_exit().
o The active and dead threads locks now explicitly require that signals
are masked.
o Access to the isdead field of the pthread structure is protected by both
the active and dead list locks for writing. Either one is sufficient for
reading.
o The thread state and type fields have been combined into one three-state
switch to make it easier to read without requiring a lock. It doesn't need
a lock for writing (and therefore for reading either) because only the
current thread can write to it and it is an integer value.
o The thread state field of the pthread structure has been eliminated. It
was an unnecessary field that mostly duplicated the flags field, but
required additional locking that would make a lot more code paths require
signal masking. Any truly unique values (such as PS_DEAD) have been
reborn as separate members of the pthread structure.
o Since the mutex and condvar pthread functions are not async-signal-safe
there is no need to muck about with the wait queues when handling
a signal ...
o ... which also removes the need for wrapping signal handlers and sigaction(2).
o The condvar and mutex async-cancellation code had to be revised as a result
of some of these changes, which resulted in semi-unrelated changes which
would have been difficult to work on as a separate commit, so they are
included as well.
The only part of the changes I am worried about is related to locking for
the pthread joining fields. But, I will take a closer look at them once this
mega-patch is committed.
from multiple threads don't initialze the same condition variable
more than once.
Explicitly compare cond pointers with PTHREAD_COND_INITIALIZER instead
of NULL. Just because it happens to be defined as NULL is no reason
to encourage the idea that people can call those functions with
NULL pointers to a condition variable.
Approved by: re/jhb
Access to the thread's flags and state is protected by
_thread_critical_enter/exit(). When a thread is signaled with a condition
its state must be protected by locking it and disabling
signals before it is taken of the waiters' queue.
Move the implementation of pthread_cond_signal() and pthread_cond_broadcast()
into one function, cond_signal(). Its behaviour is determined by the
last argument, int broadcast. If this is set to 1 it will remove all
waiters, otherwise it will wake up only the first waiter thread.
Remove an extraneous call to pthread_testcancel().
Approved by: re/blanket libthr
When in either the mutex or cond queue we notice that the thread
is already on one of the queues, don't just simply abort(). Print
out the thread's identifiers and what queue it was on.
Approved by: markm/mentor, re/blanket libthr
of pthread_cond_timedwait() is moved into cond_wait_common().
Pthread_cond_wait() and pthread_cond_timedwait() are now wrappers around
this function. Previously, the former called the latter with the abstime
pointing to 0 time. This violated Posix semantics should an application
have reason to call it with that argument because instead or returning
immediately it would have waited indefinitely for the cv to be signaled.
Approved by: markm/mentor, re/blanket libthr
Reviewed by: jeff
_get_curthread(). This is similar to the kernel's curthread. Doing
this saves stack overhead and is more convenient to the programmer.
- Pass the pointer to the newly created thread to _thread_init().
- Remove _get_curthread_slow().