Replace iSCSI-specific LUN mapping mechanism with new one, working for any
ports. By default all ports are created without LUN mapping, exposing all
CTL LUNs as before. But, if needed, LUN mapping can be manually set on
per-port basis via ctladm. For its iSCSI ports ctld does it via ioctl(2).
The next step will be to teach ctld to work with FibreChannel ports also.
Respecting additional flexibility of the new mechanism, ctl.conf now allows
alternative syntax for LUN definition. LUNs can now be defined in global
context, and then referenced from targets by unique name, as needed. It
allows same LUN to be exposed several times via multiple targets.
While there, increase limit for LUNs per target in ctld from 256 to 1024.
Some initiators do not support LUNs above 255, but that is not our problem.
Discussed with: trasz
MFC after: 2 weeks
Relnotes: yes
Sponsored by: iXsystems, Inc.
Old allocator created significant lock congestion protecting its lists
of preallocated I/Os, while UMA provides much better SMP scalability.
The downside of UMA is lack of reliable preallocation, that could guarantee
successful allocation in non-sleepable environments. But careful code
review shown, that only CAM target frontend really has that requirement.
Fix that making that frontend preallocate and statically bind CTL I/O for
every ATIO/INOT it preallocates any way. That allows to avoid allocations
in hot I/O path. Other frontends either may sleep in allocation context
or can properly handle allocation errors.
On 40-core server with 6 ZVOL-backed LUNs and 7 iSCSI client connections
this change increases peak performance from ~700K to >1M IOPS! Yay! :)
MFC after: 1 month
Sponsored by: iXsystems, Inc.
In this mode one head is in Active state, supporting all commands, while
another is in Standby state, supporting only minimal LUN discovery subset.
It is still incomplete since Standby state requires reservation support,
which is impossible to do right without having interlink between heads.
But it allows to run some basic experiments.
This allows to clone VMs and move them between LUNs inside one storage
host without generating extra network traffic to the initiator and back,
and without being limited by network bandwidth.
LUNs participating in copy operation should have UNIQUE NAA or EUI IDs set.
For LUNs without these IDs VMWare will use traditional copy operations.
Beware: the above LUN IDs explicitly set to values non-unique from the VM
cluster point of view may cause data corruption if wrong LUN is addressed!
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
If port passed negative IID value, the function will try to allocate IID
from the pool of unused, based on passed wwpn or name arguments. It does
all its best to make IID unique and persistent across reconnects.
This makes persistent reservation properly work for iSCSI. Previously,
in case of reconnects, reservation could be unexpectedly lost, or even
migrate between intiators.
Instead make ports provide wanted port and target IDs, and LUNs provide
wanted LUN IDs. After that core Device ID VPD code only had to link all
of them together and add relative port and port group numbers.
LUN ID for iSCSI LUNs no longer created by CTL, but by ctld, and passed
to CTL as "scsiname" LUN option. This makes LUNs to report the same set
of IDs, independently from the port through which it is accessed, as
required by SCSI specifications.
Having single port for all iSCSI connections makes problematic implementing
some more advanced SCSI functionality in CTL, that require proper ports
enumeration and identification.
This change extends CTL iSCSI API, making ctld daemon to control list of
iSCSI ports in CTL. When new target is defined in config fine, ctld will
create respective port in CTL. When target is removed -- port will be
also removed after all active commands through that port properly aborted.
This change require ctld to be rebuilt to match the kernel.
As a minor side effect, this allows to have iSCSI targets without LUNs.
While that may look odd and not very useful, that is not incorrect.
Before iSCSI implementation CTL had no knowledge about frontend drivers,
it had only frontends, which really were ports (alike to LUNs, if comparing
to backends). But iSCSI added there ioctl() method, which does not belong
to frontend as a port, but belongs to a frontend driver.
that don't exist.
Anecdotal evidence indicates that it is better to return 011b (bad LUN)
than 001b (LUN offline). However, this change also gives the user a
sysctl/tunable, kern.cam.ctl.inquiry_pq_no_lun, to override the change
and return to the previous behavior. (The previous behavior was to
return 001b, or LUN offline.)
ctl.c: Change the default inquiry peripheral qualifier to 011b,
and add a sysctl and tunable to allow the user to change
it back to 001b if needed.
Don't insert a Copan copyright statement in the inquiry
data. The copyright statements on the files are
sufficient.
ctl_private.h: Add sysctl variable context to the CTL softc.
ctl_cmd_table.c,
ctl_frontend_internal.c,
ctl_frontend.c,
ctl_backend.c,
ctl_error.c: Include sys/sysctl.h.
MFC after: 3 days
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month