there as "kern.ipc.sendfile.readahead".
- Push all nsfbuf related tunables into MD code. Don't move them
to new namespace in favor of POLA.
Reviewed by: scottl
Approved by: re (gjb)
transparent layering and better fragmentation.
- Normalize functions that allocate memory to use kmem_*
- Those that allocate address space are named kva_*
- Those that operate on maps are named kmap_*
- Implement recursive allocation handling for kmem_arena in vmem.
Reviewed by: alc
Tested by: pho
Sponsored by: EMC / Isilon Storage Division
sf buf allocation, use wakeup() instead of wakeup_one() to notify sf
buffer waiters about free buffer.
sf_buf_alloc() calls msleep(PCATCH) when SFB_CATCH flag was given,
and for simultaneous wakeup and signal delivery, msleep() returns
EINTR/ERESTART despite the thread was selected for wakeup_one(). As
result, we loose a wakeup, and some other waiter will not be woken up.
Reported and tested by: az
Reviewed by: alc, jhb
MFC after: 1 week
Kernel sources for 64-bit PowerPC, along with build-system changes to keep
32-bit kernels compiling (build system changes for 64-bit kernels are
coming later). Existing 32-bit PowerPC kernel configurations must be
updated after this change to specify their architecture.
(exec_setregs, etc.) in order to simplify the addition of 64-bit support,
and possible future extension of the Book-E code to handle hard floating
point and Altivec.
MFC after: 1 month
new platform module. These are probed in early boot, and have the
responsibility of determining the layout of physical memory, determining
the CPU timebase frequency, and handling the zoo of SMP mechanisms
found on PowerPC.
Reviewed by: marcel, raj
Book-E parts by: raj
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
The PQ3 is a high performance integrated communications processing system
based on the e500 core, which is an embedded RISC processor that implements
the 32-bit Book E definition of the PowerPC architecture. For details refer
to: http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8555E
This port was tested and successfully run on the following members of the PQ3
family: MPC8533, MPC8541, MPC8548, MPC8555.
The following major integrated peripherals are supported:
* On-chip peripherals bus
* OpenPIC interrupt controller
* UART
* Ethernet (TSEC)
* Host/PCI bridge
* QUICC engine (SCC functionality)
This commit brings the main functionality and will be followed by individual
drivers that are logically separate from this base.
Approved by: cognet (mentor)
Obtained from: Juniper, Semihalf
MFp4: e500