argument from a mutex to a lock_object. Add cv_*wait*() wrapper macros
that accept either a mutex, rwlock, or sx lock as the second argument and
convert it to a lock_object and then call _cv_*wait*(). Basically, the
visible difference is that you can now use rwlocks and sx locks with
condition variables using the same API as with mutexes.
which allows to use it with different kinds of locks. For example it allows
to implement Solaris conditions variables which will be used in ZFS port on
top of sx(9) locks.
Reviewed by: jhb
suspension code. When a thread A is going to sleep, it calls
sleepq_catch_signals() to detect any pending signals or thread
suspension request, if nothing happens, it returns without
holding process lock or scheduler lock, this opens a race
window which allows thread B to come in and do process
suspension work, however since A is still at running state,
thread B can do nothing to A, thread A continues, and puts
itself into actually sleeping state, but B has never seen it,
and it sits there forever until B is woken up by other threads
sometimes later(this can be very long delay or never
happen). Fix this bug by forcing sleepq_catch_signals to
return with scheduler lock held.
Fix sleepq_abort() by passing it an interrupted code, previously,
it worked as wakeup_one(), and the interruption can not be
identified correctly by sleep queue code when the sleeping
thread is resumed.
Let thread_suspend_check() returns EINTR or ERESTART, so sleep
queue no longer has to use SIGSTOP as a hack to build a return
value.
Reviewed by: jhb
MFC after: 1 week
- Implement cv_wait_unlock() method which has semantics compatible
with the sv_wait() method in IRIX. For cv_wait_unlock(), the lock
must be held before entering the function, but is not held when the
function is exited.
- Implement the existing cv_wait() function in terms of cv_wait_unlock().
Submitted by: kan
Feedback from: jhb, trhodes, Christoph Hellwig <hch at infradead dot org>
- Add a new _lock() call to each API that locks the associated chain lock
for a lock_object pointer or wait channel. The _lookup() functions now
require that the chain lock be locked via _lock() when they are called.
- Change sleepq_add(), turnstile_wait() and turnstile_claim() to lookup
the associated queue structure internally via _lookup() rather than
accepting a pointer from the caller. For turnstiles, this means that
the actual lookup of the turnstile in the hash table is only done when
the thread actually blocks rather than being done on each loop iteration
in _mtx_lock_sleep(). For sleep queues, this means that sleepq_lookup()
is no longer used outside of the sleep queue code except to implement an
assertion in cv_destroy().
- Change sleepq_broadcast() and sleepq_signal() to require that the chain
lock is already required. For condition variables, this lets the
cv_broadcast() and cv_signal() functions lock the sleep queue chain lock
while testing the waiters count. This means that the waiters count
internal to condition variables is no longer protected by the interlock
mutex and cv_broadcast() and cv_signal() now no longer require that the
interlock be held when they are called. This lets consumers of condition
variables drop the lock before waking other threads which can result in
fewer context switches.
MFC after: 1 month
have been unified with that of msleep(9), further refine the sleepq
interface and consolidate some duplicated code:
- Move the pre-sleep checks for theaded processes into a
thread_sleep_check() function in kern_thread.c.
- Move all handling of TDF_SINTR to be internal to subr_sleepqueue.c.
Specifically, if a thread is awakened by something other than a signal
while checking for signals before going to sleep, clear TDF_SINTR in
sleepq_catch_signals(). This removes a sched_lock lock/unlock combo in
that edge case during an interruptible sleep. Also, fix
sleepq_check_signals() to properly handle the condition if TDF_SINTR is
clear rather than requiring the callers of the sleepq API to notice
this edge case and call a non-_sig variant of sleepq_wait().
- Clarify the flags arguments to sleepq_add(), sleepq_signal() and
sleepq_broadcast() by creating an explicit submask for sleepq types.
Also, add an explicit SLEEPQ_MSLEEP type rather than a magic number of
0. Also, add a SLEEPQ_INTERRUPTIBLE flag for use with sleepq_add() and
move the setting of TDF_SINTR to sleepq_add() if this flag is set rather
than sleepq_catch_signals(). Note that it is the caller's responsibility
to ensure that sleepq_catch_signals() is called if and only if this flag
is passed to the preceeding sleepq_add(). Note that this also removes a
sched_lock lock/unlock pair from sleepq_catch_signals(). It also ensures
that for an interruptible sleep, TDF_SINTR is always set when
TD_ON_SLEEPQ() is true.
count is protected by the mutex that protects the condition, so the count
does not require any extra locking or atomic operations. It serves as an
optimization to avoid calling into the sleepqueue code at all if there are
no waiters.
Note that the count can get temporarily out of sync when threads sleeping
on a condition variable time out or are aborted. However, it doesn't hurt
to call the sleepqueue code for either a signal or a broadcast when there
are no waiters, and the count is never out of sync in the opposite
direction unless we have more than INT_MAX sleeping threads.
sleep queue interface:
- Sleep queues attempt to merge some of the benefits of both sleep queues
and condition variables. Having sleep qeueus in a hash table avoids
having to allocate a queue head for each wait channel. Thus, struct cv
has shrunk down to just a single char * pointer now. However, the
hash table does not hold threads directly, but queue heads. This means
that once you have located a queue in the hash bucket, you no longer have
to walk the rest of the hash chain looking for threads. Instead, you have
a list of all the threads sleeping on that wait channel.
- Outside of the sleepq code and the sleep/cv code the kernel no longer
differentiates between cv's and sleep/wakeup. For example, calls to
abortsleep() and cv_abort() are replaced with a call to sleepq_abort().
Thus, the TDF_CVWAITQ flag is removed. Also, calls to unsleep() and
cv_waitq_remove() have been replaced with calls to sleepq_remove().
- The sched_sleep() function no longer accepts a priority argument as
sleep's no longer inherently bump the priority. Instead, this is soley
a propery of msleep() which explicitly calls sched_prio() before
blocking.
- The TDF_ONSLEEPQ flag has been dropped as it was never used. The
associated TDF_SET_ONSLEEPQ and TDF_CLR_ON_SLEEPQ macros have also been
dropped and replaced with a single explicit clearing of td_wchan.
TD_SET_ONSLEEPQ() would really have only made sense if it had taken
the wait channel and message as arguments anyway. Now that that only
happens in one place, a macro would be overkill.
SW_INVOL. Assert that one of these is set in mi_switch() and propery
adjust the rusage statistics. This is to simplify the large number of
users of this interface which were previously all required to adjust the
proper counter prior to calling mi_switch(). This also facilitates more
switch and locking optimizations.
- Change all callers of mi_switch() to pass the appropriate paramter and
remove direct references to the process statistics.
thread being waken up. The thread waken up can run at a priority as
high as after tsleep().
- Replace selwakeup()s with selwakeuppri()s and pass appropriate
priorities.
- Add cv_broadcastpri() which raises the priority of the broadcast
threads. Used by selwakeuppri() if collision occurs.
Not objected in: -arch, -current
- Move struct sigacts out of the u-area and malloc() it using the
M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
and thread_stopped() are now MP safe.
Reviewed by: arch@
Approved by: re (rwatson)
td_wmesg field in the thread structure points to the description string of
the condition variable or mutex. If the condvar or the mutex had been
initialized from a loadable module that was unloaded in the meantime,
td_wmesg may now point to invalid memory. Retrieving the process table now
may panic the kernel (or access junk). Setting the td_wmesg field to NULL
after unblocking on the condvar/mutex prevents this panic.
PR: kern/47408
Approved by: jake (mentor)
(show thread {address})
Remove the IDLE kse state and replace it with a change in
the way threads sahre KSEs. Every KSE now has a thread, which is
considered its "owner" however a KSE may also be lent to other
threads in the same group to allow completion of in-kernel work.
n this case the owner remains the same and the KSE will revert to the
owner when the other work has been completed.
All creations of upcalls etc. is now done from
kse_reassign() which in turn is called from mi_switch or
thread_exit(). This means that special code can be removed from
msleep() and cv_wait().
kse_release() does not leave a KSE with no thread any more but
converts the existing thread into teh KSE's owner, and sets it up
for doing an upcall. It is just inhibitted from being scheduled until
there is some reason to do an upcall.
Remove all trace of the kse_idle queue since it is no-longer needed.
"Idle" KSEs are now on the loanable queue.
in specific situations. The owner thread must be blocked, and the
borrower can not proceed back to user space with the borrowed KSE.
The borrower will return the KSE on the next context switch where
teh owner wants it back. This removes a lot of possible
race conditions and deadlocks. It is consceivable that the
borrower should inherit the priority of the owner too.
that's another discussion and would be simple to do.
Also, as part of this, the "preallocatd spare thread" is attached to the
thread doing a syscall rather than the KSE. This removes the need to lock
the scheduler when we want to access it, as it's now "at hand".
DDB now shows a lot mor info for threaded proceses though it may need
some optimisation to squeeze it all back into 80 chars again.
(possible JKH project)
Upcalls are now "bound" threads, but "KSE Lending" now means that
other completing syscalls can be completed using that KSE before the upcall
finally makes it back to the UTS. (getting threads OUT OF THE KERNEL is
one of the highest priorities in the KSE system.) The upcall when it happens
will present all the completed syscalls to the KSE for selection.
be swapped out. Do not put such the thread directly back to the run
queue.
Spotted by: David Xu <davidx@viasoft.com.cn>
While I am here, s/PS_TIMEOUT/TDF_TIMEOUT/.
swapped in, we do not have to ask for the scheduler thread to do
that.
- Assert that a process is not swapped out in runq functions and
swapout().
- Introduce thread_safetoswapout() for readability.
- In swapout_procs(), perform a test that may block (check of a
thread working on its vm map) first. This lets us call swapout()
with the sched_lock held, providing a better atomicity.
except for the fact tha they are presently swapped out. Also add a process
flag to indicate that the process has started the struggle to swap
back in. This will be needed for the case where multiple threads
start the swapin action top a collision. Also add code to stop
a process fropm being swapped out if one of the threads in this
process is actually off running on another CPU.. that might hurt...
Submitted by: Seigo Tanimura <tanimura@r.dl.itc.u-tokyo.ac.jp>
after a panic which is not an interrupt thread, or the thread which
caused the panic. Also, remove panicstr checks from msleep() and from
cv_wait() in order to allow threads to go to sleep and yeild the cpu
to the panicing thread, or to an interrupt thread which might
be doing the crashdump.
Reviewed by: jhb (and it was mostly his idea too)
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
mutex releases to not require flags for the cases when preemption is
not allowed:
The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent
switching to a higher priority thread on mutex releease and swi schedule,
respectively when that switch is not safe. Now that the critical section
API maintains a per-thread nesting count, the kernel can easily check
whether or not it should switch without relying on flags from the
programmer. This fixes a few bugs in that all current callers of
swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from
fast interrupt handlers and the swi_sched of softclock needed this flag.
Note that to ensure that swi_sched()'s in clock and fast interrupt
handlers do not switch, these handlers have to be explicitly wrapped
in critical_enter/exit pairs. Presently, just wrapping the handlers is
sufficient, but in the future with the fully preemptive kernel, the
interrupt must be EOI'd before critical_exit() is called. (critical_exit()
can switch due to a deferred preemption in a fully preemptive kernel.)
I've tested the changes to the interrupt code on i386 and alpha. I have
not tested ia64, but the interrupt code is almost identical to the alpha
code, so I expect it will work fine. PowerPC and ARM do not yet have
interrupt code in the tree so they shouldn't be broken. Sparc64 is
broken, but that's been ok'd by jake and tmm who will be fixing the
interrupt code for sparc64 shortly.
Reviewed by: peter
Tested on: i386, alpha
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
callout_stop() would fail in two cases:
1) The timeout was currently executing, and
2) The timeout had already executed.
We only needed to work around the race for 1). We caught some instances
of 2) via the PS_TIMEOUT flag, however, if endtsleep() fired after the
process had been woken up but before it had resumed execution,
PS_TIMEOUT would not be set, but callout_stop() would fail, so we
would block the process until endtsleep() resumed it. Except that
endtsleep() had already run and couldn't resume it. This adds a new flag
PS_TIMOFAIL to indicate the case of 2) when PS_TIMEOUT isn't set.
- Implement this race fix for condition variables as well.
Tested by: sos