1093 Commits

Author SHA1 Message Date
alc
e443888faa MFamd64/i386
Add necessary page locking to pmap_mincore().
2003-09-07 20:02:38 +00:00
marcel
f7a2b4ef59 MFp4: Revamped GENERIC (and hints). This is some much more pleasant
to look at...
2003-09-07 06:39:51 +00:00
marcel
d45904e351 Replace sio(4) with uart(4). Remove the sio(4) hints and only add
those hints used by uart(4) for the determination of the serial
console in the absence of the HCDP table.
2003-09-07 05:47:10 +00:00
marcel
b7c5acb1f2 Fix a place where I forgot to change the code that checks whether
we return to kernel or userland. This triggered a panic in a KSE
application when TDF_USTATCLOCK was set in the case userland was
interrupted, but we never called ast() on our way out. As such,
we called ast() at some other time. Unfortunately, TDF_USTATCLOCK
handling assumes running in the interrupt thread. This was not
the case anymore.

To avoid making the same mistake later, interrupt() now returns
to its caller whether we interrupted userland or not. This avoids
that we have to duplicate the check in assembly, where it's bound
to fall off the scope. Now we simply check the return value and
call ast() if appropriate.

Run into this: davidxu
2003-09-05 22:50:10 +00:00
marcel
0d2e39083f Use pmap_steal_memory() for the msgbuf instead of trying to squeeze
it in the last chunk (phys_avail block). The last chunk very often is
not larger than one or two pages, resulting in a msgbuf that's too
small to hold a complete verbose boot.
Note that pmap_steal_memory() will bzero the memory it "allocates".
Consequently, ia64 will never preserve previous msgbufs. This is not
a noticable difference in practice. If the msgbuf could be reused,
it was invariably too small to have anything preserved anyway.
2003-09-01 07:06:57 +00:00
marcel
f11904081f Use direct mapped KVA for the sf_buf allocator, as made possible
by the previous commit. While here, fix a typo, reformat comments
and fix a long line.

Tested with: ftpd
2003-09-01 00:12:27 +00:00
alc
8b0114def1 Migrate the sf_buf allocator that is used by sendfile(2) and zero-copy
sockets into machine-dependent files.  The rationale for this
migration is illustrated by the modified amd64 allocator.  It uses the
amd64's direct map to avoid emphemeral mappings in the kernel's
address space.  On an SMP, the emphemeral mappings result in an IPI
for TLB shootdown for each transmitted page.  Yuck.

Maintainers of other 64-bit platforms with direct maps should be able
to use the amd64 allocator as a reference implementation.
2003-08-29 20:04:10 +00:00
njl
638644189e Minor style cleanups. 2003-08-28 16:30:31 +00:00
marcel
d6144c3ba3 Change LOG2_PAGE_SIZE from 14 to 15 bits. This will cause the CTASSERT
in vm_page.h to be reached and thus slightly increases the overall
coverage of LINT on ia64.
2003-08-25 20:02:18 +00:00
marcel
4270721f5e Add the bits for a LINT kernel. It has been verified to compile. We
may need to polish this.
2003-08-23 21:47:33 +00:00
marcel
0a0d516cca Remove PAGE_SIZE_4K, PAGE_SIZE_8K and PAGE_SIZE_16K and replace them
with LOG2_PAGE_SIZE. A single option is better to LINT than multiple
mutual exclusive ones.
2003-08-23 03:39:55 +00:00
marcel
3d03264769 Remove unused inclusion of opt_acpi.h 2003-08-23 00:07:52 +00:00
jhb
bcd3074e53 Regen. 2003-08-21 14:16:41 +00:00
jhb
c33688e027 Swap sigaction/sigreturn since they are in the wrong order.
Noticed indirectly by:	peter
2003-08-21 14:16:00 +00:00
marcel
dd5e41ad29 Undo the mistake made in revision 1.77 of trap.c and which was the
ultimate trigger for the follow-up fixes in revisions 1.78, 1.80,
1.81 and 1.82 of trap.c. I was simply too pre-occupied with the
gateway page and how it blurs kernel space with user space and
vice versa that I couldn't see that it was all a load of bollocks.

It's not the IP address that matters, it's the privilege level that
counts. We never run in user space with lifted permissions and we
sure can not run in kernel space without it. Sure, the gateway page
is the exception, but not if you look at the privilege level. It's
user space if you run with user permissions and kernel space otherwise.

So, we're back to looking at the privilege level like it should be.
There's no other way.

Pointy hat: marcel
2003-08-20 05:30:35 +00:00
gordon
2456eb188f Fixup the ELF branding information to point to the new home of rtld. 2003-08-17 08:08:38 +00:00
marcel
4194d813c1 In vm_thread_swap{in|out}(), remove the alpha specific conditional
compilation and replace it with a call to cpu_thread_swap{in|out}().
This allows us to add similar code on ia64 without cluttering the
code even more.
2003-08-16 23:15:15 +00:00
marcel
c1d4b42a69 Further cleanup <machine/cpu.h> and <machine/md_var.h>: move the MI
prototypes of cpu_halt(), cpu_reset() and swi_vm() from md_var.h to
cpu.h. This affects db_command.c and kern_shutdown.c.

ia64: move all MD prototypes from cpu.h to md_var.h. This affects
madt.c, interrupt.c and mp_machdep.c. Remove is_physical_memory().
It's not used (vm_machdep.c).

alpha: the MD prototypes have been left in cpu.h with a comment
that they should be there. Moving them is left for later. It was
expected that the impact would be significant enough to be done in
a seperate commit.

powerpc: MD prototypes left in cpu.h. Comment added.

Suggested by: bde
Tested with: make universe (pc98 incomplete)
2003-08-16 16:57:57 +00:00
marcel
0cde071e2f Fix a range check bug. Don't left-shift the integer argument 'data'.
Sign extension happens after the shift, not before so that boundary
cases like 0x40000000 will not be caught properly.
Instead, right shift ndirty. It is guaranteed to be a multiple of 8.
While here, do some manual code motion and code commoning.

Range check bug pointed out by: iedowse
2003-08-16 01:49:38 +00:00
marcel
cae6951d00 Fix the generation of coredumps. We did not take the dirty registers
that were on the kernel stack into account. For now we write them
out to the register stack of the process before creating the dump.
This however is not the final solution. The problem is that we may
invalidate the coredump by overwriting vital information due to an
invalid backing store pointer. Instead we need to write the dirty
registers to an unused region of VM which will result in a seperate
segment in the coredump. For now we can at least get to all the
registers from a coredump.
2003-08-15 05:52:48 +00:00
marcel
5fbc98d240 Add an instruction group break after the move to application register
and the move to control register to avoid dependency violations when
these functions are used. Note that explicit data and instruction
serialization also need to be in a subsequent instruction group.
This too requires that we have an igrp break here.
2003-08-15 05:46:33 +00:00
marcel
b37a3e34cd Introduce two machine specific ptrace(2) requests: PT_GETKSTACK and
PT_SETKSTACK. These requests allow the tracing process to access the
dirty registers of the traced process that are on the kernel stack.

Note that there's currently no way to access the rnat register for
those dirty registers that are not (yet) covered by a nat collection
point. The interface for this is still being slept on.

Also note that implied by these requests is the division of work:
The tracing process has to keep track of where registers are spilled
and is responsible to figure out where the NaT bit of the stacked
registers are at any time during the execution of the traced process.
The kernel provides the interfaces but will not abstract the fact
that the register stack can be split. This model does not follow
the approach taken in Linux where PT_PEEK and PT_POKE deals with
this automagically.
2003-08-15 05:40:59 +00:00
marcel
ec1e7cccba Don't use VM_MIN_KERNEL_ADDRESS to check if the faulting address is
in user space or kernel space. VM_MIN_KERNEL_ADDRESS starts after the
gateway page, which means that improper memory accesses to the gateway
page while in user mode would panic the kernel. Use VM_MAX_ADDRESS
instead. It ends before the gateway page. The difference between
VM_MIN_KERNEL_ADDRESS and VM_MAX_ADDRESS is exactly the gateway page.
2003-08-13 03:20:10 +00:00
marcel
ad2c7b6428 Put an instruction group break between the move to ar.rnat and the
move to ar.rsc. The RSE must be in enforced lazy mode when writing
to RSE modifyable registers. In this case we restore the RSE NaT
collection register ar.rnat. I have seen 2 general exception faults
on pluto1 now that indicate that the move to ar.rsc has already
happened prior to the move to ar.rnat, meaning that the RSE is not
in enforced lazy mode anymore. The ia64 dependency and instruction
ordering rules seem to allow having both registers written to in
the same instruction group, provided ar.rsc is written to later than
ar.rnat (based on the ordering semantics). It appears that we may
be pushing our luck. For now, put them in seperate cycles (by means
of the instruction group break). If we ever get a general exception
fault on the move to ar.rnat again, we have definite proof that
something else is fishy.
2003-08-13 02:49:50 +00:00
imp
3bc162cfa3 Expand inline the relevant parts of src/COPYRIGHT for Matt Dillon's
copyrighted files.

Approved by: Matt Dillon
2003-08-12 23:24:05 +00:00
marcel
cb02f3b09a Extend identifycpu():
o  Differentiate between CPU family and CPU model. There are multiple
   Itanium 2 models and it's nice to differentiate between them.
o  Seperately export the CPU family and CPU model with sysctl.
o  Merced is the only model in the Itanium family.
o  Add Madison to the Itanium 2 family. We already knew about McKinley.
o  Print the CPU family between parenthesis, like we do with the i386
   CPU class.

My prototype now identifies itself as:
	CPU: Merced (800.03-Mhz Itanium)

pluto1 and pluto2 will eventually identify themselves as:
	CPU: McKinley (900.00-Mhz Itanium 2)
2003-08-12 08:10:16 +00:00
marcel
eb75f40ad2 Cleanup prototypes in cpu.h, including fswintrberr and any references
to it. Sort the remaining prototypes in cpu.h.

No functional change.
2003-08-12 03:51:53 +00:00
marcel
fd356a4423 Cleanup and style(9) fixes. No functional change. 2003-08-11 21:25:19 +00:00
marcel
37e1a74113 o move cpu_reset() from vm_machdep.c to machdep.c.
o reorder cpu_boot(), cpu_halt() and identifycpu().

No functional change.
2003-08-10 21:33:07 +00:00
marcel
07045a57cf Now that we can ignore up to 8KB of dirty registers, remove the RSE
magic from exec_setregs(). In set_mcontext() we now also don't have
to worry that we entered the kernel with more that 512 bytes of
dirty registers on the kernel stack. Note that we cannot make any
assumptions anymore WRT to NaT collection points in exec_setregs(),
so we have to deal with them now.
2003-08-10 08:04:21 +00:00
marcel
c39e23c83d MFi386 1.422 & 1.423: lock page queues in pmap_insert_entry(). 2003-08-08 00:30:26 +00:00
jhb
37641f86f1 Consistently use the BSD u_int and u_short instead of the SYSV uint and
ushort.  In most of these files, there was a mixture of both styles and
this change just makes them self-consistent.

Requested by:	bde (kern_ktrace.c)
2003-08-07 15:04:27 +00:00
marcel
139a0b455d Better define the flags in the mcontext_t and properly set the flags
when we create contexts. The meaning of the flags are documented in
<machine/ucontext.h>. I only list them here to help browsing the
commit logs:
	_MC_FLAGS_ASYNC_CONTEXT
	_MC_FLAGS_HIGHFP_VALID
	_MC_FLAGS_KSE_SET_MBOX
	_MC_FLAGS_RETURN_VALID
	_MC_FLAGS_SCRATCH_VALID

Yes, _MC_FLAGS_KSE_SET_MBOX is a hack and I'm proud of it :-)
2003-08-07 07:52:39 +00:00
marcel
897a96b736 o Fix cut-n-paste whitespace corruption in previous commit
o  For trap-based upcalls the argument (the kse_mailbox) to
   the UTS must be written onto the kernel stack, not the
   user stack. While here, deal with the fact that we may
   be at a NaT collection point.
2003-08-07 07:40:19 +00:00
marcel
023428afce In cpu_set_upcall_kse(), create the upcall according to the entry
path into the kernel. Normally it's due to a syscall, but one can
also be created as the result of a clock interrupt (for example).
This now even more looks like exec_setregs().

While here, add an assert that we don't expect more than 8KB of
dirty registers on the kernel stack.
2003-08-06 23:28:19 +00:00
marcel
f8309da488 o In revision 1.45 of exception.S we changed exception_restore to
unconditionally restore ar.k7 (kernel memory stack) and ar.k6
   (kernel register stack). I don't know what I was smoking then,
   but if you unconditionally restore ar.k6, you also want to
   compute its value unconditionally. By having the computation
   predicated and dependent on whether we return to user mode, we
   would end up writing junk (= invalid value for ar.bspstore) if
   we would return to kernel mode. But the whole point of the
   unconditional restoration was that there is a grey area where
   we still need to have ar.k6 restored. If we restore with a junk
   value, we would end up wedging the machine on the next interrupt.
   So, unconditionally calculate the value we unconditionally write
   to ar.k6.

o  The previous braino was found while making the following change:
   We used to clear the lower 9 bits of the value we write to ar.k6.
   The meaning being that we know that the kernel register stack is
   at least 512 byte aligned and simply clearing the lower 9 bits
   allows us to return to a context of which we don't have dirty
   registers on the kernel stack, even though the context that
   entered the kernel does have dirty registers on the kernel stack.
   By masking-off the lower bits, we correctly obtain the base of
   the register stack without having to worry that we didn't actually
   reached the base while unwinding it.
   The change is to mask off the lower 13 bits, knowing that the
   kernel register stack is always 8KB aligned. The advantage is that
   we don't have to worry anymore if there's more than 512 bytes of
   dirty registers on the kernel stack. A situation that frequently
   occurs. In exec_setregs() in machdep.c:1.147 or older, we had to
   deal with that situation by copying the active portion of the
   register stack down in multiples of 512 bytes. Now that we mask off
   the lower 13 bits we don't have to do that at all. Contemporary
   IPF processors have a register file that can hold up to 96 stacked
   registers (=784 bytes [incl. 2 NaT collections]). With no indication
   that register files grow beyond a couple of hundred registers, we
   should not have to worry about it anymore... and yes, 640KB is
   enough for everybody :-)
   This change helps setcontext(2) and cpu_set_upcall_kse() in that
   they can return to completely different contexts without having to
   mess with the kernel stack. Of course exec_setregs() doesn't need
   to do that anymore as well.
2003-08-06 21:32:38 +00:00
marcel
d63e3e36c0 o Put the syscall return registers in the context. Not only do we
need this for swapcontext(), KSE upcalls initiated from ast()
   also need to save them so that we properly return the syscall
   results after having had a context switch. Note that we don't
   use r11 in the kernel. However, the runtime specification has
   defined r8-r11 as return registers, so we put r11 in the context
   as well. I think deischen@ was trying to tell me that we should
   save the return registers before. I just wasn't ready for it :-)

o  The EPC syscall code has 2 return registers and 2 frame markers
   to save. The first (rp/pfs) belongs to the syscall stub itself.
   The second (iip/cfm) belongs to the caller of the syscall stub.
   We want to put the second in the context (note that iip and cfm
   relate to interrupts. They are only being misused by the syscall
   code, but are not part of a regular context).
   This way, when the context is switched to again, we return to
   the caller of setcontext(2) as one would expect.

o  Deal with dirty registers on the kernel stack. The getcontext()
   syscall will flush the RSE, so we don't expect any dirty registers
   in that case. However, in thread_userret() we also need to save
   the context in certain cases. When that happens, we are sure that
   there are dirty registers on the kernel stack.
   This implementation simply copies the registers, one at a time,
   from the kernel stack to the user stack. NAT collections are not
   dealt with. Hence we don't preserve NaT bits. A better solution
   needs to be found at some later time.
   We also don't deal with this in all cases in set_mcontext. No
   temporay solution is implemented because it's not a showstopper.
   The problem is that we need to ignore the dirty registers and we
   automaticly do that for at most 62 registers. When there are more
   than 62 dirty registers we have a memory "leak".

This commit is fundamental for KSE support.
2003-08-05 18:52:02 +00:00
marcel
1e97e213cf Fix logic bug in the previous commit. Any region less than 5 is a
user space region. Hence, we need to test if 5 is greater than the
region; not greater equal.
This bug caused us to call ast() while interrupting kernel mode.
2003-08-04 22:00:48 +00:00
jhb
e4889cd470 - Since td_critnest is now initialized in MI code, it doesn't have to be
set in cpu_critical_fork_exit() anymore.
- As far as I can tell, cpu_thread_link() has never been used, not even
  when it was originally added, so remove it.
2003-08-04 20:32:45 +00:00
marcel
d5a33e59d1 Cleanup the clock code. This includes:
o  Remove alpha specific timer code (mc146818A) and compiled-out
   calibration of said timer.
o  Remove i386 inherited timer code (i8253) and related acquire and
   release functions.
o  Move sysbeep() from clock.c to machdep.c and have it return
   ENODEV. Console beeps should be implemented using ACPI or if no
   such device is described, using the sound driver.
o  Move the sysctls related to adjkerntz, disable_rtc_set and
   wall_cmos_clock from machdep.c to clock.c, where the variables
   are.
o  Don't hardcode a hz value of 1024 in cpu_initclocks() and don't
   bother faking a stathz that's 1/8 of that. Keep it simple: hz
   defaults to HZ and stathz equals hz. This is also how it's done
   for sparc64.
o  Keep a per-CPU ITC counter (pc_clock) and adjustment (pc_clockadj)
   to calculate ITC skew and corrections. On average, we adjust the
   ITC match register once every ~1500 interrupts for a duration of
   2 consequtive interruprs. This is to correct the non-deterministic
   behaviour of the ITC interrupt (there's a delay between the match
   and the raising of the interrupt).
o  Add 4 debugging sysctls to monitor clock behaviour. Those are
   debug.clock_adjust_edges, debug.clock_adjust_excess,
   debug.clock_adjust_lost and debug.clock_adjust_ticks. The first
   counts the individual adjustment cycles (when the skew first
   crosses the threshold), the second counts the number of times the
   adjustment was excessive (any non-zero value is to be considered
   a bug), the third counts lost clock interrupts and the last counts
   the number of interrupts for which we applied an adjustment
   (debug.clock_adjust_ticks / debug.clock_adjust_edges gives the
   avarage duration of an individual adjustment -- should be ~2).

While here, remove some nearby (trivial) left-overs from alpha and
other cleanups.
2003-08-04 05:13:18 +00:00
marcel
47e1af7da8 Fix handling of external interrupts: we weren't calling ast() when
interrupting user mode. The net effect of this bug is that a clock
interrupt does not cause rescheduling and processes are not
preempted. It only takes a "while (1);" to render the machine
useless.

This bug was introduced by the context changes and EPC syscall code.
Handling of ASTs was moved to C for clarity and ease of maintenance,
but was not added for the external interrupt case.

This needs to be revisited. We now have calls to do_ast() in trap(),
break_syscall() and ivt_External_Interrupt(). A single call in
exception_restore covers these 3 places without duplication. This
is where we handled ASTs prior to the overhaul, except that the
meat has been moved to do_ast(), a C function. This was the goal
to begin with.

Pointy hat: marcel
2003-08-04 00:08:39 +00:00
obrien
150d7d3036 Style sync. 2003-08-03 07:50:19 +00:00
marcel
844a52c0a0 Don't use uint64_t. Use unsigned long instead. One is supposed to use
ucontext_t without having to include headers other than <ucontext.h>.
2003-08-02 01:12:31 +00:00
marcel
2f78c165a5 Write the preserved registers to (and read them from) struct reg and
struct fpreg.
2003-08-01 07:21:34 +00:00
bmilekic
7246ed5007 Make sure that when the PV ENTRY zone is created in pmap, that it's
created not only with UMA_ZONE_VM but also with UMA_ZONE_NOFREE.  In
the i386 case in particular, the pmap code would hook a special
page allocation routine that allocated from kernel_map and not kmem_map,
and so when/if the pageout daemon drained the zones, it could actually
push out slabs from the PV ENTRY zone but call UMA's default page_free,
which resulted in pages allocated from kernel_map being freed to
kmem_map; bad.  kmem_free() ignores the return value of the
vm_map_delete and just returns.  I'm not sure what the exact
repercussions could be, but it doesn't look good.

In the PAE case on i386, we also set-up a zone in pmap, so be
conservative for now and make that zone also ZONE_NOFREE and
ZONE_VM.  Do this for the pmap zones for the other archs too,
although in some cases it may not be entirely necessarily.  We'd
rather be safe than sorry at this point.

Perhaps all UMA_ZONE_VM zones should by default be also
UMA_ZONE_NOFREE?

May fix some of silby's crashes on the PV ENTRY zone.
2003-07-31 03:39:51 +00:00
peter
1c887bc40f Deal with 'options KSTACK_PAGES' being a global option. 2003-07-31 01:31:32 +00:00
peter
19f0a8f822 Cosmetic: fix some disorder of #include "opt_...." files 2003-07-31 01:29:09 +00:00
peter
827caad7ba Remove leftover relic of pmap_new_thread() etc. 2003-07-31 01:28:41 +00:00
mux
4e543dc212 - Introduce a new busdma flag BUS_DMA_ZERO to request for zero'ed
memory in bus_dmamem_alloc().  This is possible now that
  contigmalloc() supports the M_ZERO flag.
- Remove the locking of Giant around calls to contigmalloc() since
  contigmalloc() now grabs Giant itself.
2003-07-27 13:52:10 +00:00
marcel
09bfab1e9f Remove prototype of ia64_pa_access(). The function has been moved to
mem.c where it's been made static.
2003-07-26 10:13:30 +00:00