it. We should probably fix the code but appeasing clang with this fix for now.
gcc does not have such limit.
Reviewed by: jmg
Approved by: re (hrs), sbruno (mentor, implicit)
This driver is based on Linux 3.8 and a previous effort by kan@.
More informations about this project can be found on the FreeBSD wiki:
https://wiki.freebsd.org/AMD_GPU
The driver is split into:
sys/dev/drm2:
The driver sources.
sys/modules/drm2/radeonkmw:
The driver main kernel module's Makefile.
sys/modules/drm2/radeonkmsfw:
All firmware kernel module Makefiles. There's one directory and one
Makefile for each firmware.
sys/contrib/dev/drm2/radeonkmsfw:
All firmware binary sources.
tools/tools/drm/radeon
Tools to update firmwares or regenerate some headers.
Merging the driver to FreeBSD 9.x may be possible but not a priority for
now.
Help from: kib@, kan@
Tested by: avg@, kwm@, ray@,
Alexander Yerenkow <yerenkow@gmail.com>,
Anders Bolt-Evensen <andersbo87@me.com>,
Denis Djubajlo <stdedjub@googlemail.com>,
J.R. Oldroyd <fbsd@opal.com>,
Mikaël Urankar <mikael.urankar@gmail.com>,
Pierre-Emmanuel Pédron <pepcitron@gmail.com>,
Sam Fourman Jr. <sfourman@gmail.com>,
Wade <wade-is-great@live.com>,
(probably other I forgot...)
HW donations: kyzh, Yakaz
This header can be easily updated using the new "gen-drm_pciids" script,
available in tools/tools/drm. The script uses the Linux' drm_pciids.h
header for new IDs, the FreeBSD's one because we add the name of the
device to each IDs, and the PCI IDs database (misc/pciids port) to fill
this name automatically for new IDS.
To call the script:
tools/tools/drm/gen-drm_pciids \
/path/to/linux/drm_pciids.h \
/path/to/freebsd/drm_pciids.h \
/path/to/pciids/pci.ids
devices and the FreeBSD USB stack itself. This program can be used to
test compliance against well established usb.org standards, also
called chapter-9 tests. The host platform can act as either USB device
or USB host depending on the available hardware. The basic USB
communication happens through FreeBSD's own libusb v2, and some
sysctls are also used to invoke specific error conditions. This test
program can be used to verify correct operation of external USB
harddisks under heavy load and various other conditions. The software
is driven via a simple command line interface. Main supported USB host
classes are "USB mass storage" and "USB modems".
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: so (des)
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
all T4 and T5 based cards and is useful for analyzing TSO, LRO, TOE, and
for general purpose monitoring without tapping any cxgbe or cxl ifnet
directly.
Tracers on the T4/T5 chips provide access to Ethernet frames exactly as
they were received from or transmitted on the wire. On transmit, a
tracer will capture a frame after TSO segmentation, hw VLAN tag
insertion, hw L3 & L4 checksum insertion, etc. It will also capture
frames generated by the TCP offload engine (TOE traffic is normally
invisible to the kernel). On receive, a tracer will capture a frame
before hw VLAN extraction, runt filtering, other badness filtering,
before the steering/drop/L2-rewrite filters or the TOE have had a go at
it, and of course before sw LRO in the driver.
There are 4 tracers on a chip. A tracer can trace only in one direction
(tx or rx). For now cxgbetool will set up tracers to capture the first
128B of every transmitted or received frame on a given port. This is a
small subset of what the hardware can do. A pseudo ifnet with the same
name as the nexus driver (t4nex0 or t5nex0) will be created for tracing.
The data delivered to this ifnet is an additional copy made inside the
chip. Normal delivery to cxgbe<n> or cxl<n> will be made as usual.
/* watch cxl0, which is the first port hanging off t5nex0. */
# cxgbetool t5nex0 tracer 0 tx0 (watch what cxl0 is transmitting)
# cxgbetool t5nex0 tracer 1 rx0 (watch what cxl0 is receiving)
# cxgbetool t5nex0 tracer list
# tcpdump -i t5nex0 <== all that cxl0 sees and puts on the wire
If you were doing TSO, a tcpdump on cxl0 may have shown you ~64K
"frames" with no L3/L4 checksum but this will show you the frames that
were actually transmitted.
/* all done */
# cxgbetool t5nex0 tracer 0 disable
# cxgbetool t5nex0 tracer 1 disable
# cxgbetool t5nex0 tracer list
# ifconfig t5nex0 destroy
- spa status can not be called before spa init
- libzfs.h inclusion is now required
- fix alternative code for explicit root dataset lookup
MFC after: 10 days
+ pkt-gen -f rx now remains active even when traffic stops
Previous behaviour (exit after 1 second of silence) can be
restored with the -W option
+ the -X option does a hexdump of the content of a packet (both tx and rx).
This can be useful to check what goes in and out.
+ the -I option instructs the sender to use indirect buffers
(not really useful other than to test the kernel module in the
VALE switch)
- the VALE switch now support up to 254 destinations per switch,
unicast or broadcast (multicast goes to all ports).
- we can attach hw interfaces and the host stack to a VALE switch,
which means we will be able to use it more or less as a native bridge
(minor tweaks still necessary).
A 'vale-ctl' program is supplied in tools/tools/netmap
to attach/detach ports the switch, and list current configuration.
- the lookup function in the VALE switch can be reassigned to
something else, similar to the pf hooks. This will enable
attaching the firewall, or other processing functions (e.g. in-kernel
openvswitch) directly on the netmap port.
The internal API used by device drivers does not change.
Userspace applications should be recompiled because we
bump NETMAP_API as we now use some fields in the struct nmreq
that were previously ignored -- otherwise, data structures
are the same.
Manpages will be committed separately.
Generate images sparsely. This saves space and time, especially when
generating images inside a VM (PR 173482).
Add a 'true' statement to last_orders to prevent some version of sh from
tripping over an empty function.
The European version of the patent expired in 2011.
The US version of the patent expired in 2012 or prior.
Reviewed by: des
No objection from: cperciva, ehaupt