Commit Graph

19 Commits

Author SHA1 Message Date
cem
5abde16df3 radix_mpath: Don't derefence a NULL pointer in for loop iteration
It seems rn_dupedkey may be NULL, because of the NULL check inside the loop.
(Also, the rt gets assigned from rn_dupedkey and NULL checked at top of loop.)
However, the for-loop update condition happens before the top-of-loop check and
dereferences 'rt' unconditionally.

Instead, NULL-check before dereferencing.

If rn_dupedkey cannot in fact be NULL, or something else protects this, feel
free to revert this and add an ASSERT of some kind instead.

This was introduced in r191080 (2009) and moved around slightly in r293657.

Reported by:	Coverity
CID:		1348482
Sponsored by:	EMC / Isilon Storage Division
2016-04-26 20:27:17 +00:00
melifaro
23582454c7 MFP r287070,r287073: split radix implementation and route table structure.
There are number of radix consumers in kernel land (pf,ipfw,nfs,route)
  with different requirements. In fact, first 3 don't have _any_ requirements
  and first 2 does not use radix locking. On the other hand, routing
  structure do have these requirements (rnh_gen, multipath, custom
  to-be-added control plane functions, different locking).
Additionally, radix should not known anything about its consumers internals.

So, radix code now uses tiny 'struct radix_head' structure along with
  internal 'struct radix_mask_head' instead of 'struct radix_node_head'.
  Existing consumers still uses the same 'struct radix_node_head' with
  slight modifications: they need to pass pointer to (embedded)
  'struct radix_head' to all radix callbacks.

Routing code now uses new 'struct rib_head' with different locking macro:
  RADIX_NODE_HEAD prefix was renamed to RIB_ (which stands for routing
  information base).

New net/route_var.h header was added to hold routing subsystem internal
  data. 'struct rib_head' was placed there. 'struct rtentry' will also
  be moved there soon.
2016-01-25 06:33:15 +00:00
melifaro
5ac53a20e5 Clean up original route path selection logic a bit.
NULL pointer dereference claimed by Coverity was possible
  if one (or several) next-hops for had their weights set to 0.

CID:	1348482
2016-01-15 13:47:11 +00:00
melifaro
7cc47d54cd Bring RADIX_MPATH support to new routing KPI to ease migration.
Move actual rte selection process from rtalloc_mpath_fib()
  to the rt_path_selectrte() function. Add public
  rt_mpath_select() to use in fibX_lookup_ functions.
2016-01-11 08:45:28 +00:00
glebius
8a3e4bbebb - Remove rt_metrics_lite and simply put its members into rtentry.
- Use counter(9) for rt_pksent (former rt_rmx.rmx_pksent). This
  removes another cache trashing ++ from packet forwarding path.
- Create zini/fini methods for the rtentry UMA zone. Via initialize
  mutex and counter in them.
- Fix reporting of rmx_pksent to routing socket.
- Fix netstat(1) to report "Use" both in kvm(3) and sysctl(3) mode.

The change is mostly targeted for stable/10 merge. For head,
rt_pksent is expected to just disappear.

Discussed with:		melifaro
Sponsored by:		Netflix
Sponsored by:		Nginx, Inc.
2014-03-05 01:17:47 +00:00
melifaro
9f8536f282 Partially fix IPv4 interface routes deletion in RADIX_MPATH.
Noticed by:	Nikolay Denev <ndenev at gmail.com>
MFC after:	1 month
2014-01-06 22:36:20 +00:00
melifaro
f85abe9555 Change semantics for rnh_lookup() function: now
it performs exact match search, regardless of netmask existance.
This simplifies most of rnh_lookup() consumers.

Fix panic triggered by deleting non-existent host route.

PR:		kern/185092
Submitted by:	Nikolay Denev <ndenev at gmail.com>
MFC after:	1 month
2014-01-04 22:25:26 +00:00
qingli
631a8abdff When the RADIX_MPATH kernel option is enabled, the RADIX_MPATH code tries
to find the first route node of an ECMP chain before executing the route
command. If the system has a default route, and the specific route argument
to the command does not exist in the routing table, then the default route
would be reached. The current code does not verify the reached node matches
the given route argument, therefore erroneous removed the entry. This patch
fixes that bug.

Approved by:	re
MFC after:	3 days
2011-08-25 04:31:20 +00:00
qingli
93013817b0 One of the advantages of enabling ECMP (a.k.a RADIX_MPATH) is to
allow for connection load balancing across interfaces. Currently
the address alias handling method is colliding with the ECMP code.
For example, when two interfaces are configured on the same prefix,
only one prefix route is installed. So connection load balancing
among the available interfaces is not possible.

The other advantage of ECMP is for failover. The issue with the
current code, is that the interface link-state is not reflected
in the route entry. For example, if there are two interfaces on
the same prefix, the cable on one interface is unplugged, new and
existing connections should switch over to the other interface.
This is not done today and packets go into a black hole.

Also, there is a small bug in the kernel where deleting ECMP routes
in the userland will always return an error even though the command
is successfully executed.

MFC after:	5 days
2010-03-09 01:11:45 +00:00
kmacy
8149bfaed6 Extend route command:
- add show as alias for get
	- add weights to allow mpath to do more than equal cost
	- add sticky / nostick to disable / re-enable per-connection load balancing

This adds a field to rt_metrics_lite so network bits of world will need to be re-built.

Reviewed by:	jeli & qingli
2009-04-14 23:05:36 +00:00
qingli
ec826ad5c7 This main goals of this project are:
1. separating L2 tables (ARP, NDP) from the L3 routing tables
2. removing as much locking dependencies among these layers as
   possible to allow for some parallelism in the search operations
3. simplify the logic in the routing code,

The most notable end result is the obsolescent of the route
cloning (RTF_CLONING) concept, which translated into code reduction
in both IPv4 ARP and IPv6 NDP related modules, and size reduction in
struct rtentry{}. The change in design obsoletes the semantics of
RTF_CLONING, RTF_WASCLONE and RTF_LLINFO routing flags. The userland
applications such as "arp" and "ndp" have been modified to reflect
those changes. The output from "netstat -r" shows only the routing
entries.

Quite a few developers have contributed to this project in the
past: Glebius Smirnoff, Luigi Rizzo, Alessandro Cerri, and
Andre Oppermann. And most recently:

- Kip Macy revised the locking code completely, thus completing
  the last piece of the puzzle, Kip has also been conducting
  active functional testing
- Sam Leffler has helped me improving/refactoring the code, and
  provided valuable reviews
- Julian Elischer setup the perforce tree for me and has helped
  me maintaining that branch before the svn conversion
2008-12-15 06:10:57 +00:00
kmacy
012446002a - Use RTFREE_LOCKED macro
- Don't clone route on lookup (was causing arpresolve to fail)
- u_int_32 -> uint32_t

Reviewed by:	qingli
MFC after:	3 days
2008-11-11 09:40:27 +00:00
bz
70360c684f Hide the IPv4 init function if the kernel is compiled without INET.
It is not used in that case and would not compile.
2008-11-05 11:54:56 +00:00
qingli
abbda8507b When RADIX_MPATH is enabled, the route selection is not rotating
through the multipath entries. The hash value was a signed integer
and was always giving a -1 value.

PR:	123991
Submitted by:	Barrett Lyon
2008-05-30 09:34:35 +00:00
julian
1dfc5c98a4 Add code to allow the system to handle multiple routing tables.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)

Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.

From my notes:

-----

  One thing where FreeBSD has been falling behind, and which by chance I
  have some time to work on is "policy based routing", which allows
  different
  packet streams to be routed by more than just the destination address.

  Constraints:
  ------------

  I want to make some form of this available in the 6.x tree
  (and by extension 7.x) , but FreeBSD in general needs it so I might as
  well do it in -current and back port the portions I need.

  One of the ways that this can be done is to have the ability to
  instantiate multiple kernel routing tables (which I will now
  refer to as "Forwarding Information Bases" or "FIBs" for political
  correctness reasons). Which FIB a particular packet uses to make
  the next hop decision can be decided by a number of mechanisms.
  The policies these mechanisms implement are the "Policies" referred
  to in "Policy based routing".

  One of the constraints I have if I try to back port this work to
  6.x is that it must be implemented as a EXTENSION to the existing
  ABIs in 6.x so that third party applications do not need to be
  recompiled in timespan of the branch.

  This first version will not have some of the bells and whistles that
  will come with later versions. It will, for example, be limited to 16
  tables in the first commit.
  Implementation method, Compatible version. (part 1)
  -------------------------------
  For this reason I have implemented a "sufficient subset" of a
  multiple routing table solution in Perforce, and back-ported it
  to 6.x. (also in Perforce though not  always caught up with what I
  have done in -current/P4). The subset allows a number of FIBs
  to be defined at compile time (8 is sufficient for my purposes in 6.x)
  and implements the changes needed to allow IPV4 to use them. I have not
  done the changes for ipv6 simply because I do not need it, and I do not
  have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.

  Other protocol families are left untouched and should there be
  users with proprietary protocol families, they should continue to work
  and be oblivious to the existence of the extra FIBs.

  To understand how this is done, one must know that the current FIB
  code starts everything off with a single dimensional array of
  pointers to FIB head structures (One per protocol family), each of
  which in turn points to the trie of routes available to that family.

  The basic change in the ABI compatible version of the change is to
  extent that array to be a 2 dimensional array, so that
  instead of protocol family X looking at rt_tables[X] for the
  table it needs, it looks at rt_tables[Y][X] when for all
  protocol families except ipv4 Y is always 0.
  Code that is unaware of the change always just sees the first row
  of the table, which of course looks just like the one dimensional
  array that existed before.

  The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
  are all maintained, but refer only to the first row of the array,
  so that existing callers in proprietary protocols can continue to
  do the "right thing".
  Some new entry points are added, for the exclusive use of ipv4 code
  called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
  which have an extra argument which refers the code to the correct row.

  In addition, there are some new entry points (currently called
  rtalloc_fib() and friends) that check the Address family being
  looked up and call either rtalloc() (and friends) if the protocol
  is not IPv4 forcing the action to row 0 or to the appropriate row
  if it IS IPv4 (and that info is available). These are for calling
  from code that is not specific to any particular protocol. The way
  these are implemented would change in the non ABI preserving code
  to be added later.

  One feature of the first version of the code is that for ipv4,
  the interface routes show up automatically on all the FIBs, so
  that no matter what FIB you select you always have the basic
  direct attached hosts available to you. (rtinit() does this
  automatically).

  You CAN delete an interface route from one FIB should you want
  to but by default it's there. ARP information is also available
  in each FIB. It's assumed that the same machine would have the
  same MAC address, regardless of which FIB you are using to get
  to it.

  This brings us as to how the correct FIB is selected for an outgoing
  IPV4 packet.

  Firstly, all packets have a FIB associated with them. if nothing
  has been done to change it, it will be FIB 0. The FIB is changed
  in the following ways.

  Packets fall into one of a number of classes.

  1/ locally generated packets, coming from a socket/PCB.
     Such packets select a FIB from a number associated with the
     socket/PCB. This in turn is inherited from the process,
     but can be changed by a socket option. The process in turn
     inherits it on fork. I have written a utility call setfib
     that acts a bit like nice..

         setfib -3 ping target.example.com # will use fib 3 for ping.

     It is an obvious extension to make it a property of a jail
     but I have not done so. It can be achieved by combining the setfib and
     jail commands.

  2/ packets received on an interface for forwarding.
     By default these packets would use table 0,
     (or possibly a number settable in a sysctl(not yet)).
     but prior to routing the firewall can inspect them (see below).
     (possibly in the future you may be able to associate a FIB
     with packets received on an interface..  An ifconfig arg, but not yet.)

  3/ packets inspected by a packet classifier, which can arbitrarily
     associate a fib with it on a packet by packet basis.
     A fib assigned to a packet by a packet classifier
     (such as ipfw) would over-ride a fib associated by
     a more default source. (such as cases 1 or 2).

  4/ a tcp listen socket associated with a fib will generate
     accept sockets that are associated with that same fib.

  5/ Packets generated in response to some other packet (e.g. reset
     or icmp packets). These should use the FIB associated with the
     packet being reponded to.

  6/ Packets generated during encapsulation.
     gif, tun and other tunnel interfaces will encapsulate using the FIB
     that was in effect withthe proces that set up the tunnel.
     thus setfib 1 ifconfig gif0 [tunnel instructions]
     will set the fib for the tunnel to use to be fib 1.

  Routing messages would be associated with their
  process, and thus select one FIB or another.
  messages from the kernel would be associated with the fib they
  refer to and would only be received by a routing socket associated
  with that fib. (not yet implemented)

  In addition Netstat has been edited to be able to cope with the
  fact that the array is now 2 dimensional. (It looks in system
  memory using libkvm (!)). Old versions of netstat see only the first FIB.

  In addition two sysctls are added to give:
  a) the number of FIBs compiled in (active)
  b) the default FIB of the calling process.

  Early testing experience:
  -------------------------

  Basically our (IronPort's) appliance does this functionality already
  using ipfw fwd but that method has some drawbacks.

  For example,
  It can't fully simulate a routing table because it can't influence the
  socket's choice of local address when a connect() is done.

  Testing during the generating of these changes has been
  remarkably smooth so far. Multiple tables have co-existed
  with no notable side effects, and packets have been routes
  accordingly.

  ipfw has grown 2 new keywords:

  setfib N ip from anay to any
  count ip from any to any fib N

  In pf there seems to be a requirement to be able to give symbolic names to the
  fibs but I do not have that capacity. I am not sure if it is required.

  SCTP has interestingly enough built in support for this, called VRFs
  in Cisco parlance. it will be interesting to see how that handles it
  when it suddenly actually does something.

  Where to next:
  --------------------

  After committing the ABI compatible version and MFCing it, I'd
  like to proceed in a forward direction in -current. this will
  result in some roto-tilling in the routing code.

  Firstly: the current code's idea of having a separate tree per
  protocol family, all of the same format, and pointed to by the
  1 dimensional array is a bit silly. Especially when one considers that
  there is code that makes assumptions about every protocol having the
  same internal structures there. Some protocols don't WANT that
  sort of structure. (for example the whole idea of a netmask is foreign
  to appletalk). This needs to be made opaque to the external code.

  My suggested first change is to add routing method pointers to the
  'domain' structure, along with information pointing the data.
  instead of having an array of pointers to uniform structures,
  there would be an array pointing to the 'domain' structures
  for each protocol address domain (protocol family),
  and the methods this reached would be called. The methods would have
  an argument that gives FIB number, but the protocol would be free
  to ignore it.

  When the ABI can be changed it raises the possibilty of the
  addition of a fib entry into the "struct route". Currently,
  the structure contains the sockaddr of the desination, and the resulting
  fib entry. To make this work fully, one could add a fib number
  so that given an address and a fib, one can find the third element, the
  fib entry.

  Interaction with the ARP layer/ LL layer would need to be
  revisited as well. Qing Li has been working on this already.

  This work was sponsored by Ironport Systems/Cisco

Reviewed by:    several including rwatson, bz and mlair (parts each)
Obtained from:  Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
qingli
53e28a2a3a In function rtalloc_mpath(), do not try to release the lock if the ro_rt
pointer is NULL.

Reported by:	(pluknet at gmail dot com)
2008-04-24 05:04:52 +00:00
qingli
9d72a61c72 Make this file compile on IPv6 kernels. 2008-04-13 23:04:46 +00:00
phk
8988da494e Make this compile also on non-IPv6 kernels. 2008-04-13 21:38:05 +00:00
qingli
c75b6e5dea These files handle the radix tree for the ECMP routes.
The original code from KAME did not take care of address
aliases or multiple ip addresses that have the same
prefix.

Reviewed by:	rwatson, gnn, sam, kmacy, julian
2008-04-13 06:12:13 +00:00