Due to reading initialized variable, FIS receive area was always allocated
as 256 bytes, suitable for command-based switching, instead of 4096 bytes,
required for FIS-based switching. This caused memory corruption in case of
port multipliers used on FBS-capable HBAs (Marvell).
MFC after: 1 week
This is probably a NOP change since IS register is not activery used for
interrupts below the shared, but it looked odd to clear interrupts we did
not handle.
Incorrect sign expansion in variables that supposed to be a bit fields
caused infinite loop. Fixing this allows system properly detect maximal
possible 32 devices configured on AHCI HBA of BHyVe. That case did not
happen in a wild before due to lack of hardware AHCI HBAs with 32 ports.
Approved by: re (gjb@)
MFC after: 1 week
This change includes support for SCSI SMR drives (which conform to the
Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to
the Zoned ATA Command Set or ZAC spec) behind SAS expanders.
This includes full management support through the GEOM BIO interface, and
through a new userland utility, zonectl(8), and through camcontrol(8).
This is now ready for filesystems to use to detect and manage zoned drives.
(There is no work in progress that I know of to use this for ZFS or UFS, if
anyone is interested, let me know and I may have some suggestions.)
Also, improve ATA command passthrough and dispatch support, both via ATA
and ATA passthrough over SCSI.
Also, add support to camcontrol(8) for the ATA Extended Power Conditions
feature set. You can now manage ATA device power states, and set various
idle time thresholds for a drive to enter lower power states.
Note that this change cannot be MFCed in full, because it depends on
changes to the struct bio API that break compatilibity. In order to
avoid breaking the stable API, only changes that don't touch or depend on
the struct bio changes can be merged. For example, the camcontrol(8)
changes don't depend on the new bio API, but zonectl(8) and the probe
changes to the da(4) and ada(4) drivers do depend on it.
Also note that the SMR changes have not yet been tested with an actual
SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports
ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT
layer, so any testing help would be appreciated. These changes have been
tested with Seagate Host Aware SATA drives attached to both SAS and SATA
controllers. Also, I do not have any SATA Host Managed devices, and I
suspect that it may take additional (hopefully minor) changes to support
them.
Thanks to Seagate for supplying the test hardware and answering questions.
sbin/camcontrol/Makefile:
Add epc.c and zone.c.
sbin/camcontrol/camcontrol.8:
Document the zone and epc subcommands.
sbin/camcontrol/camcontrol.c:
Add the zone and epc subcommands.
Add auxiliary register support to build_ata_cmd(). Make sure to
set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA
flags as appropriate for ATA commands.
Add a new get_ata_status() function to parse ATA result from SCSI
sense descriptors (for ATA passthrough over SCSI) and ATA I/O
requests.
sbin/camcontrol/camcontrol.h:
Update the build_ata_cmd() prototype
Add get_ata_status(), zone(), and epc().
sbin/camcontrol/epc.c:
Support for ATA Extended Power Conditions features. This includes
support for all features documented in the ACS-4 Revision 12
specification from t13.org (dated February 18, 2016).
The EPC feature set allows putting a drive into a power power mode
immediately, or setting timeouts so that the drive will
automatically enter progressively lower power states after various
idle times.
sbin/camcontrol/fwdownload.c:
Update the firmware download code for the new build_ata_cmd()
arguments.
sbin/camcontrol/zone.c:
Implement support for Shingled Magnetic Recording (SMR) drives
via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA
Command Set (ZAC).
These specs were developed in concert, and are functionally
identical. The primary differences are due to SCSI and ATA
differences. (SCSI is big endian, ATA is little endian, for
example.)
This includes support for all commands defined in the ZBC and
ZAC specs.
sys/cam/ata/ata_all.c:
Decode a number of additional ATA command names in ata_op_string().
Add a new CCB building function, ata_read_log().
Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building
functions. These support both DMA and NCQ encapsulation.
sys/cam/ata/ata_all.h:
Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and
ata_zac_mgmt_in().
sys/cam/ata/ata_da.c:
Revamp the ada(4) driver to support zoned devices.
Add four new probe states to gather information needed for zone
support.
Add a new adasetflags() function to avoid duplication of large
blocks of flag setting between the async handler and register
functions.
Add new sysctl variables that describe zone support and paramters.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
sys/cam/scsi/scsi_all.c:
Add command descriptions for the ZBC IN/OUT commands.
Add descriptions for ZBC Host Managed devices.
Add a new function, scsi_ata_pass() to do ATA passthrough over
SCSI. This will eventually replace scsi_ata_pass_16() -- it
can create the 12, 16, and 32-byte variants of the ATA
PASS-THROUGH command, and supports setting all of the
registers defined as of SAT-4, Revision 5 (March 11, 2016).
Change scsi_ata_identify() to use scsi_ata_pass() instead of
scsi_ata_pass_16().
Add a new scsi_ata_read_log() function to facilitate reading
ATA logs via SCSI.
sys/cam/scsi/scsi_all.h:
Add the new ATA PASS-THROUGH(32) command CDB. Add extended and
variable CDB opcodes.
Add Zoned Block Device Characteristics VPD page.
Add ATA Return SCSI sense descriptor.
Add prototypes for scsi_ata_read_log() and scsi_ata_pass().
sys/cam/scsi/scsi_da.c:
Revamp the da(4) driver to support zoned devices.
Add five new probe states, four of which are needed for ATA
devices.
Add five new sysctl variables that describe zone support and
parameters.
The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC
devices when they are attached via a SCSI to ATA Translation (SAT)
layer. Since ZBC -> ZAC translation is a new feature in the T10
SAT-4 spec, most SATA drives will be supported via ATA commands
sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will
prefer the ZBC interface, if it is available, for performance
reasons, but will use the ATA PASS-THROUGH interface to the ZAC
command set if the SAT layer doesn't support translation yet.
As I mentioned above, ZBC command support is untested.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
Add scsi_zbc_in() and scsi_zbc_out() CCB building functions.
Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB
building functions. Note that these have return values, unlike
almost all other CCB building functions in CAM. The reason is
that they can fail, depending upon the particular combination
of input parameters. The primary failure case is if the user
wants NCQ, but fails to specify additional CDB storage. NCQ
requires using the 32-byte version of the SCSI ATA PASS-THROUGH
command, and the current CAM CDB size is 16 bytes.
sys/cam/scsi/scsi_da.h:
Add ZBC IN and ZBC OUT CDBs and opcodes.
Add SCSI Report Zones data structures.
Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and
scsi_ata_zac_mgmt_in() prototypes.
sys/dev/ahci/ahci.c:
Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver.
ahci_setup_fis() previously set the top bits of the sector count
register in the FIS to 0 for FPDMA commands. This is okay for
read and write, because the PRIO field is in the only thing in
those bits, and we don't implement that further up the stack.
But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that
byte, so it needs to be transmitted to the drive.
In ahci_setup_fis(), always set the the top 8 bits of the
sector count register. We need it in both the standard
and NCQ / FPDMA cases.
sys/geom/eli/g_eli.c:
Pass BIO_ZONE commands through the GELI class.
sys/geom/geom.h:
Add g_io_zonecmd() prototype.
sys/geom/geom_dev.c:
Add new DIOCZONECMD ioctl, which allows sending zone commands to
disks.
sys/geom/geom_disk.c:
Add support for BIO_ZONE commands.
sys/geom/geom_disk.h:
Add a new flag, DISKFLAG_CANZONE, that indicates that a given
GEOM disk client can handle BIO_ZONE commands.
sys/geom/geom_io.c:
Add a new function, g_io_zonecmd(), that handles execution of
BIO_ZONE commands.
Add permissions check for BIO_ZONE commands.
Add command decoding for BIO_ZONE commands.
sys/geom/geom_subr.c:
Add DDB command decoding for BIO_ZONE commands.
sys/kern/subr_devstat.c:
Record statistics for REPORT ZONES commands. Note that the
number of bytes transferred for REPORT ZONES won't quite match
what is received from the harware. This is because we're
necessarily counting bytes coming from the da(4) / ada(4) drivers,
which are using the disk_zone.h interface to communicate up
the stack. The structure sizes it uses are slightly different
than the SCSI and ATA structure sizes.
sys/sys/ata.h:
Add many bit and structure definitions for ZAC, NCQ, and EPC
command support.
sys/sys/bio.h:
Convert the bio_cmd field to a straight enumeration. This will
yield more space for additional commands in the future. After
change r297955 and other related changes, this is now possible.
Converting to an enumeration will also prevent use as a bitmask
in the future.
sys/sys/disk.h:
Define the DIOCZONECMD ioctl.
sys/sys/disk_zone.h:
Add a new API for managing zoned disks. This is very close to
the SCSI ZBC and ATA ZAC standards, but uses integers in native
byte order instead of big endian (SCSI) or little endian (ATA)
byte arrays.
This is intended to offer to the complete feature set of the ZBC
and ZAC disk management without requiring the application developer
to include SCSI or ATA headers. We also use one set of headers
for ioctl consumers and kernel bio-level consumers.
sys/sys/param.h:
Bump __FreeBSD_version for sys/bio.h command changes, and inclusion
of SMR support.
usr.sbin/Makefile:
Add the zonectl utility.
usr.sbin/diskinfo/diskinfo.c
Add disk zoning capability to the 'diskinfo -v' output.
usr.sbin/zonectl/Makefile:
Add zonectl makefile.
usr.sbin/zonectl/zonectl.8
zonectl(8) man page.
usr.sbin/zonectl/zonectl.c
The zonectl(8) utility. This allows managing SCSI or ATA zoned
disks via the disk_zone.h API. You can report zones, reset write
pointers, get parameters, etc.
Sponsored by: Spectra Logic
Differential Revision: https://reviews.freebsd.org/D6147
Reviewed by: wblock (documentation)
can handle it, and add the code to add it to the FIS that's sent to
the drive. The mvs driver is the only other ATA driver in the system,
and its hardware doesn't appear to support setting the Auxiliary
register.
Differential Revision: https://reviews.freebsd.org/D5598
as before. The common scheduling bits have moved from inline code in
each of the CAM periph drivers into a library that implements the
default scheduling.
In addition, a number of rate-limiting and I/O preference options can
be enabled by adding CAM_IOSCHED_NETFLIX to your config file. A number
of extra stats are also maintained. CAM_IOSCHED_NETFLIX isn't on by
default because it uses a separate BIO_READ and BIO_WRITE queue, so
doesn't honor BIO_ORDERED between these two types of operations. We
already didn't honor it for BIO_DELETE, and we don't depend on
BIO_ORDERED between reads and writes anywhere in the system (it is
currently used with BIO_FLUSH in ZFS to make sure some writes are
complete before others start and as a poor-man's soft dependency in
one place in UFS where we won't be issuing READs until after the
operation completes). However, out of an abundance of caution, it
isn't enabled by default.
Plus, this also brings in NCQ TRIM support for those SSDs that support
it. A black list is also provided for known rogues that use NCQ trim
as an excuse to corrupt the drive. It was difficult to separate out
into a separate commit.
This code has run in production at Netflix for over a year now.
Sponsored by: Netflix, Inc
Differential Revision: https://reviews.freebsd.org/D4609
Changes introduced to AHCI code adding support for MSI-x
caused interrupt storm on Alpine boards.
This is unintended behaviour so added quirk to omit this functionality.
Reviewed by: mav
Submitted by: Marcin Mazurek <mma@semihalf.com>
Obtained from: Semihalf
Sponsored by: Annapurna Labs
Differential Revision: https://reviews.freebsd.org/D4301
ahci.c had one signed long, which was passed into rman, rather than u_long.
After the switch of rman_res_t from size u_long to size uintmax_t, the sign
extension caused ranges to get messed up, and ahcich* to not attach.
There may be more signed longs used in this way, which will be fixed as they're
reported.
Reported by: pho
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources. For
now, this is still compatible with u_long.
This is step one in migrating rman to use uintmax_t for resources instead of
u_long.
Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.
This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.
Reviewed By: jhb
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
typically memory mapped bus, for example on the AMD Opteron A1100 the AHCI
device is mapped in the CPUs address space, and not through a PCI
controller.
Further work is needed for this to work with ACPI as this is expected to be
common on ARMv8 servers.
Reviewed by: mav, mmel
Obtained from: mmel, ABT Systems Ltd
Relnotes: yes
Sponsored by: SoftIron Inc
Differential Revision: https://reviews.freebsd.org/D4269
On ARM, we must ensure proper interdevice write ordering.
The AHCI interrupt status register must be updated in HW before
registers in interrupt controller.
Unfortunately, only way how we can do it is readback.
Discussed with: mav
Approved by: kib (mentor)
Differential Revision: https://reviews.freebsd.org/D4240
- Allocate resources for MSI-X table and PBA if necessary
- Add function ahci_free_mem() to free all resources
Reviewed by: jhb, mav
Obtained from: Semihalf
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D3009
The Allwinner SoC has an AHCI device on its internal main bus rather
than the PCI bus. This SoC is somewhat underdocumented, and its SATA
controller is no exception. The methods to support this chip were
harvested from the Linux Allwinner SDK, and then constants invented to
describe what's going on based on low-level constants contained in the
SATA standard and guess work.
This SoC requires a specific AHCI channel setup in order to start the
operations on the channel properly.
Clock setup and AHCI channel setup idea came from NetBSD.
Tested on Cubieboard 2 and Banana pi (and attachment on Cubieboard by
Pratik Singhal).
Differential Revision: https://reviews.freebsd.org/D737
Submitted by: imp
Reviewed by: imp, ganbold, mav, andrew
According to report, some recent unrelated changes in the driver triggered
timeouts when testing for absent port multiplier. Cause of this behavior
channge is unclear, but since these chips are old, rare and buggy, it is
easier to just disable port multiplier support, same as done in Linux.
Reported by: bar
MFC after: 3 days
Overview:
* implemented quirk for forcing SATA interface enable
* restore value to status register - this enables link autonegotiation
Modifications:
* devid:vendorid field
* quirk for forcing PI setting (BIOS is doing that on PC-like systems)
* write to capabilites field to enable phy link initialization
Submitted by: Wojciech Macek <wma@semihalf.com>
Reviewed by: imp, mav
Obtained from: Semihalf
In 10.1-RELEASE the default number of MSI vectors used was changed from one
to as many vectors as the HW supports.
This change resulted in an ahci timeouts regression when running on AMD
SB7x0/SB8x0/SB9x0 hardware, so its now limited to 1 MSI by default using
this new quirk.
MFC after: 2 weeks
Sponsored by: Multiplay
Previously ahci_attach returned a hard coded ENXIO instead of the value
from ahci_setup_interrupt. This is effectively a NOOP change as currently
ahci_setup_interrupt only ever returns 0 or ENXIO, so just there to protect
against any future changes to that.
Differential Revision: D838
MFC after: 2 weeks
Sponsored by: Multiplay
This prevents the possiblity of any overruns on the statically allocated
struct irqs field.
Differential Revision: D838
MFC after: 2 weeks
X-MFC-With: r276012
Sponsored by: Multiplay
Previously, any timeout value for which (timeout * hz) will overflow the
signed integer, will give weird results, since callout(9) routines will
convert negative values of ticks to '1'. For unsigned integer overflow we
will get sufficiently smaller timeout values than expected.
Switch from callout_reset, which requires conversion to int based ticks
to callout_reset_sbt to avoid this.
Also correct isci to correctly resolve ccb timeout.
This was based on the original work done by Eygene Ryabinkin
<rea@freebsd.org> back in 5 Aug 2011 which used a macro to help avoid
the overlow.
Differential Revision: https://reviews.freebsd.org/D1157
Reviewed by: mav, davide
MFC after: 1 month
Sponsored by: Multiplay
It was found that VirtualBox' AHCI does not allow nterrupt to be cleared
before the interrupt status register is read, causing interrupt storm.
AHCI specification allows to skip this register use when multi-vector MSI
is enabled and so interrupting port is known. For single-vector MSI that
is not stated explicitly, but if the port is only one, it is obviously
known too.
Previously it was possible for issues e.g. use after free, to result
from processing the done queue while not holding the channel lock.
While this should never happen in practice, unexpected code flows
which result in two threads processing from the same queue may
be possible.
We now use a local STAILQ to prevent this ever being an issue.
Sponsored by: Multiplay
For controllers with only one port (like PCIe or M.2 SSDs) interrupt can
come from only one source, and skipping read saves few percents of CPU time.
MFC after: 1 month
H/W donated by: I/O Switch
I gave up to update list of Marvell chips that require this quirk.
The final nail was growing number of PCIe/M.2 SSDs where Marvell chips
have PCI IDs of different vendors.
MFC after: 1 week
H/W donated by: I/O Switch
PCI IDs into quirks, which mostly fit (though you'd get no argument
from me that AHCI_Q_SATA1_UNIT0 is oddly specific). Set these quirks
in the PCI attachment. Make some shared functions public so that PCI
and possibly other bus attachments can use them.
The split isn't perfect yet, but it is functional. The split will be
perfected as other bus attachments for AHCI are written.
Sponsored by: Netflix
Reviewed by: kan, mav
Differential Revision: https://reviews.freebsd.org/D699