Through the PITA of endiannness, clock has to be MHz freq << 8.
Don't trust NVRAM on SBus cards.
Set a default initiator ID sensibly.
SBus/ISP now working, what with the change to sbus.c earlier today.
flags include INTR_MPSAFE. Put the flags in a common place so that
both isp_sbus && isp_pci DTRT.
In isp_mbxdma setup, drop any locks prior to calling things like
bus_dmatag_create. This gets rid of these obnoxious WITNESS messages
about 'sleeping with locks held' blah blah blah blah blah.
This code does not imply that SBus cards work yet. They hang for me.
But I can't netboot the latest snapshot on my ultra1e, and things
hang at bus_setup_intr time.
Since I'm offline for a while, I thought I'd toss this in in case somebody
else who has a bit better luck wants to fart around with it. Please try
and wait until I get back to check things in.
Oops; I forgot for previous delta... If we're and FC or ULTRA2 or better
card, we can have a 1024 element request queue instead of 256.
MFC after: 1 week
Remove sim queue freezes for resource shortages. I've had too many
strange race conditions where I freeze on a resource shortage but
never get unfrozen.
Consolidate the remaining sim queue freeze condition (for loopdown)
into an inline with debug messages that allows us to track problems
at ISP_LOGDEBUG0 level easier. Change a bunch of debug messages about
loop down/up conditions to ISP_LOGDEBUG0 level.
Remove dead isp_relsim code.
Change some internal flag stuff for efficiency.
Complain vociferously if we try and use our FC scratch area while it's
busy being used already (I mean, if we don't have solaris' ability
to sleep as an interrupt thread which would allow us to just use
a p/v semaphore, at least *say* when you've just borked yourself).
Add infrastructure to allow overrides of hard loopid && initiator
id from boot variables.
Fix the usual quota of silly bugs:
+ 'ktmature' needs to be per-instance. Argh.
+ When entering isp_watchdog, set intsok to zero, preserving
old value to restore later. It's not nice to try and sleep
from splsoftclock.
+ Fix tick overflow buglet in checking timeout value.
MFC after: 1 week
turns out that there's something of a hole in our new fabric name
server stuff. We ask the name server for entities that have
registered as a specific type. That type is FC-SCSI. If the entity
hasn't performed a REGISTER FC4 TYPES, the fabric nameserver won't
return it.
This brings this driver to a bit of a fork in the road as to what
the right thing to do is. For servicing the needs of accessing
FC-SCSI devices, this method is fine, and to be preferred. It is
extremely unlikely we're interested in fabric devices that *don't*
register correctly. If I ever get around to adding an FC-IP stack,
then asking for devices that have registers as FC-IP types is also
the right thing to do.
So- asking the fabric nameserver for a specific type is fine, *as
long as you are only interested in specific types*. If, on the other
hand, you want to create (as for management tool support) a picture
of everything on the fabric, this is *not* so fine. There are a
large class of FC-SCSI *initiators* who *don't* correctly register,
so we never will *see* them.
Is this a problem? Yes, but only a little one. If we want to do such
management tool support, we should probably run a *different* fabric
nameserver query algorithm. Better yet, we should talk to the management
nameserver in Brocade switches instead of the standard FC-GS-2 fabric
nameserver (which can be unwieldy).
Other changes: if we've overrrides marked, don't set some default
values from reading NVRAM. This allows us to override things like
EXEC throttle without having to ignore NVRAM entirely.
MFC after: 1 week
CAM_QUIRK_HILUN devices we loop thru 32bits of lun. Oops.
Switch to using USEC_DELAY rather than USEC_SLEEP at isp_reset time.
Try to paper around a defect in clients that don't correctly registers
themeselves with the fabric nameserver.
Minor updates for Mirapoint support- they still use code that is not
HANDLE_LOOPSTATE_IN_OUTER_LAYERS, and, surprise surprise, this old
stuff had some bugs in it.
Clean up some target mode stuff.
MFC after: 1 week
topology, speed, loopid, WWPN/WWNN, etc.
Beef up target mode. Add isp_handle_platform_notify_scsi and
isp_handle_platform_notify_fc platform handlers to handle immediate
notifies (isp_handle_platform_notify_scsi is still stubbed out).
In implementation of isp_handle_platform_notify_fc, for IN_ABORT_TASK,
peel off a pending XPT_IMMED_NOTIFY and call xpt_done on it and hope
that somebody upstream is listening.
Make sure on final CTIO2s that we set residual correctly. These are
absolutely crucial. Make sure we set relative offset for each CTIO2
based upon bytes we've already xferred. This is what the private
adjunct datat to the original ATIO is. Note state of command so
we can figure out where to find it if we get an ABORT from the firmware.
Make sure we *always* set CAM_TAG_ACTION_VALID for ATIO2s. Make sure
we keep track of the original lun.
If se sent status (or we're otherwise done with the command), don't
forget to free the adjunct structure.
(so we can, when things get lost, find out who currently is processing
on behalf of this open exchange. Invariably, when things are lost and
wedged, it's CAM).
Keep an atio resource counter locally.
MFC after: 1 week
running ABOUT FIRMWARE with some that were started by BIOS downloads).
Redo CTIO2 dma mapping- use continuation segments instead of multiple
CTIO2s. Thanks to Veritas for sponsoring this work (in a different
context).
MFC after: 1 week
to *not* do flow control based upon resource counts for the firmware.
Increase default immediate notify count to 16.
Change isp_target_async to a function returning an integer.
is not set in the scsi completion status, or if the residual is clearly
nonsense, then this was a command that suffered the loss of one or more
FC frames in the middle of the exchange.
Set HBA_BOTCH and hope it will get retried. It's the only thing we can do.
MFC after: 1 day
lun address modifier of sorts. Only an HP XP-512 seems to have cared.
Fix a few misplaced pointers for the new fabric goop, which has been
demonstrated to work on newer Brocades and McData switches now.
Put in commented out code which would run GFF_ID if the QLogic f/w
allowed it.
Don't whine about not being able to find a handle for a command if it
was a command aborted (by us).
Grumble. I've seen better documented architectures out of Redmond.
Redo fabric evaluation to not use GET ALL NEXT (GA_NXT). Switches seem
to be trying to wriggle out of supporting this well. Instead, use
GID_FT to get a list of Port IDs and then use GPN_ID/GNN_ID to find the
port and node wwn. This should make working on fabrics a bit cleaner and
more stable.
This also caused some cleanup of SNS subcommand canonicalization so that
we can actually check for FS_ACC and FS_RJT, and if we get an FS_RJT,
print out the reason and explanation codes.
We'll keep the old GA_NXT method around if people want to uncomment a
controlling definition in ispvar.h.
This also had us clean up ISPASYNC_FABRICDEV to use a local lportdb argument
and to have the caller explicitly say that a device is at the end of the
fabric list.
MFC after: 1 week
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
stuff was right, but the busdma stuff was massively not right.
Didn't really test on ia64 or i386- don't have the former h/w and my
FreeBSD-current disk is unwell right now. Hope that this is okay.
MFC after: 1 week
soon because it's just getting harder and harder to find switches
that correctly implement the GET ALL NEXT subcommands for the SNS
protocol.
Latch up result out pointer and set a busy flag when we're looking
at the response queue. This allows for a cleaner way to make sure
we don't get multiple CPUs trying to read the same response queue
entries.
Change how isp_handle_other_response returns values (clarity).
Make PORT UNAVAILABLE the same as PORT LOGOUT (force a LIP).
Do some formatting changes.
MFC after: 0 days
it worked- but I ran into a case with a 2204 where commands were being lost
right and left. Best be safe.
For target mode, or things called if we call isp_handle_other response- note
that we might have dropped locks by changing the output pointer so we bail
from the loop. It's the responsibility of the entity dropping the lock to
make sure that we let the f/w know we've read thus far into the response
queue (else we begin processing the same entries again- blech!).
MFC after: 1 day
OUT status. We are, apparently, required to force the f/w to log back in
if we want to try and talk to that disk again. This means either issuing
a LOGIN LOCAL LOOP PORT mailbox command, or by issuing a LIP. I've elected
to issue a LIP because this has a better chance of waking up the disk which
clearly just crashed and burned.
These should not occur at all. If they do, they should be darned rare.
MFC after: 1 week
If you want QLogic to look at a potential f/w problem for FC cards, you really
have to provide them info in the format they expect. This involves dumping
a lot of hardware registers (> 300 16 bit registers) and a lot of SRAM
(> 128KB minimum). Thus all of this code is #ifdef protected which will
become an option so that the memory allocation of where to dump the crash
image is pretty expensive. It's worth it if you have a reproducible problem
because they have some tools that can tell them, given the f/w version,
the precise state of everything.
MFC after: 1 week
disable MWI on 2300
based on function code, set an 'isp_port' for the 2312- it's a
separate instance, but the NVRAM is shared, and the second port's
NVRAM is at offset 256.
+ Enable RIO operation for LVD SCSI cards. This makes a *big* difference
as even under reasonable load we get batched completions of about 30
commands at a time on, say, an ISP1080.
+ Do 'continuation' mailbox commands- this allows us to specify a work
area within the softc and 'continue' repeated mailbox commands. This is
more or less on an ad hoc basis and is currently only used for firmware
loading (which f/w now loads substantially faster becuase the calling
thread is only woken when all the f/w words are loaded- not for each
one of the 40000 f/w words that gets loaded).
+ If we're about to return from isp_intr with a 'bogus interrupt' indication,
and we're not a 23XX card, check to see whether the semaphore register is
currently *2* (not *1* as it should be) and whether there's an async completion
sitting in outgoing mailbox0. This seems to capture cases of lost fast posting
and RIO interrupts that the 12160 && 1080 have been known to pump out under
extreme load (extreme, as in > 250 active commands).
+ FC_SCRATCH_ACQUIRE/FC_SCRATCH_RELEASE macros.
+ Endian correct swizzle/unswizzle of an ATIO2 that has a WWPN in it.
MFC after: 1 week
firmware to delay completion of commands so that it can attempt to batch
a bunch of completions at once- either returning 16 bit handles in mailbox
registers, or in a resposne queue entry that has a whole wad of 16 bit handles.
Distinguish between 2300 and 2312 chipsets- if only because the revisions
on the chips have different meanings.
Add more instrumentation plus ISP_GET_STATS and ISP_CLR_STATS ioctls.
Run up the maximum number of response queue entities we'll look at
per interrupt.
If we haven't set HBA role yet, always return success from isp_fc_runstate.
MFC after: 2 weeks
a GetAllNext response. Otherwise, we won't unswizzle
it correctly. This was found on linux/PPC.
This mandated creating another inline: isp_get_gan_response.
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
If we get a completion status of RQCS_QUEUE_FULL, it means
that the internal queues are full. Other QLogic boards set
the QFULL SCSI status. But *nooooooooooo*, not the 2300.
MFC after: 1 day
appropriate cache flush that provides MEMORY_BARRIER in between handoffs
between host && RISC processor for the shared memory request/response
queues.
Submitted by: dfr@nlsystems.com
to see if there's an interrupt (avoids PCI parity errors
which can occur on the 2312 if you access some registers
from the host at the same time the RISC on the 2312 is
C accessing them).
MFC after: 1 day
per-command component that we *don't* try and pass thru CAM. CAM just
is too risky and too much of a pain- structures get copied, but not
all info of interest can be considered safely transported thru all
consumers (including user space) from the incoming ATIO to the outgoing
CTIO- it's just much safer to have a buddy structure, identified by the
command's tag which *does* make it thru safely.
Pay attention to link speed and report 200MB/s xfer speed for a
23XX card in 2GPs mode.
MFC after: 1 week