- Eliminate an odd, special-case feature:
if start == end == 0 then all pages are removed. Only one caller
used this feature and that caller can trivially pass the object's
size.
- Assert that the vm_object is locked on entry; don't bother testing
for a NULL vm_object.
- Style: Fix lines that are longer than 80 characters.
- Add a parameter to vm_pageout_flush() that tells vm_pageout_flush()
whether its caller has locked the vm_object. (This is a temporary
measure to bootstrap vm_object locking.)
possible for some time.
- Lock the buf before accessing fields. This should very rarely be locked.
- Assert that B_DELWRI is set after we acquire the buf. This should always
be the case now.
requiring locked bufs in vfs_bio_awrite(). Previously the buf could
have been written out by fsync before we acquired the buf lock if it
weren't for giant. The cluster_wbuild() handles this race properly but
the single write at the end of vfs_bio_awrite() would not.
- Modify flushbufqueues() so there is only one copy of the loop. Pass a
parameter in that says whether or not we should sync bufs with deps.
- Call flushbufqueues() a second time and then break if we couldn't find
any bufs without deps.
Remove extraneous uses of vop_null, instead defering to the default op.
Rename vnode type "vfs" to the more descriptive "syncer".
Fix formatting for various filesystems that use vop_print.
track of the number of dirty buffers held by a vnode. When a
bdwrite is done on a buffer, check the existing number of dirty
buffers associated with its vnode. If the number rises above
vfs.dirtybufthresh (currently 90% of vfs.hidirtybuffers), one
of the other (hopefully older) dirty buffers associated with
the vnode is written (using bawrite). In the event that this
approach fails to curb the growth in it the vnode's number of
dirty buffers (due to soft updates rollback dependencies),
the more drastic approach of doing a VOP_FSYNC on the vnode
is used. This code primarily affects very large and actively
written files such as snapshots. This change should eliminate
hanging when taking snapshots or doing background fsck on
very large filesystems.
Hopefully, one day it will be possible to cache filesystem
metadata in the VM cache as is done with file data. As it
stands, only the buffer cache can be used which limits total
metadata storage to about 20Mb no matter how much memory is
available on the system. This rather small memory gets badly
thrashed causing a lot of extra I/O. For example, taking a
snapshot of a 1Tb filesystem minimally requires about 35,000
write operations, but because of the cache thrashing (we only
have about 350 buffers at our disposal) ends up doing about
237,540 I/O's thus taking twenty-five minutes instead of four
if it could run entirely in the cache.
Reported by: Attila Nagy <bra@fsn.hu>
Sponsored by: DARPA & NAI Labs.
- Remove the buftimelock mutex and acquire the buf's interlock to protect
these fields instead.
- Hold the vnode interlock while locking bufs on the clean/dirty queues.
This reduces some cases from one BUF_LOCK with a LK_NOWAIT and another
BUF_LOCK with a LK_TIMEFAIL to a single lock.
Reviewed by: arch, mckusick
in massive locking issues on diskless systems.
It is also not clear that this sysctl is non-dangerous in its
requirements for locked down memory on large RAM systems.
call is in progress on the vnode. When vput() or vrele() sees a
1->0 reference count transition, it now return without any further
action if this flag is set. This flag is necessary to avoid recursion
into VOP_INACTIVE if the filesystem inactive routine causes the
reference count to increase and then drop back to zero. It is also
used to guarantee that an unlocked vnode will not be recycled while
blocked in VOP_INACTIVE().
There are at least two cases where the recursion can occur: one is
that the softupdates code called by ufs_inactive() via ffs_truncate()
can call vput() on the vnode. This has been reported by many people
as "lockmgr: draining against myself" panics. The other case is
that nfs_inactive() can call vget() and then vrele() on the vnode
to clean up a sillyrename file.
Reviewed by: mckusick (an older version of the patch)
to treat desiredvnodes much more like a limit than as a vague concept.
On a 2GB RAM machine where desired vnodes is 130k, we run out of
kmem_map space when we hit about 190k vnodes.
If we wake up the vnode washer in getnewvnode(), sleep until it is done,
so that it has a chance to offer us a washed vnode. If we don't sleep
here we'll just race ahead and allocate yet a vnode which will never
get freed.
In the vnodewasher, instead of doing 10 vnodes per mountpoint per
rotation, do 10% of the vnodes distributed evenly across the
mountpoints.
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
check for and/or report I/O errors. The result is that a VFS_SYNC
or VOP_FSYNC called with MNT_WAIT could loop infinitely on ufs in
the presence of a hard error writing a disk sector or in a filesystem
full condition. This patch ensures that I/O errors will always be
checked and returned. This patch also ensures that every call to
VFS_SYNC or VOP_FSYNC with MNT_WAIT set checks for and takes
appropriate action when an error is returned.
Sponsored by: DARPA & NAI Labs.
be sure to exit the loop with vp == NULL if no candidates are found.
Formerly, this bug would cause the last vnode inspected to be used,
even if it was not available. The result was a panic "vn_finished_write:
neg cnt".
Sponsored by: DARPA & NAI Labs.
vclean() function (e.g., vp->v_vnlock = &vp->v_lock) rather
than requiring filesystems that use alternate locks to do so
in their vop_reclaim functions. This change is a further cleanup
of the vop_stdlock interface.
Submitted by: Poul-Henning Kamp <phk@critter.freebsd.dk>
Sponsored by: DARPA & NAI Labs.
that use it. Specifically, vop_stdlock uses the lock pointed to by
vp->v_vnlock. By default, getnewvnode sets up vp->v_vnlock to
reference vp->v_lock. Filesystems that wish to use the default
do not need to allocate a lock at the front of their node structure
(as some still did) or do a lockinit. They can simply start using
vn_lock/VOP_UNLOCK. Filesystems that wish to manage their own locks,
but still use the vop_stdlock functions (such as nullfs) can simply
replace vp->v_vnlock with a pointer to the lock that they wish to
have used for the vnode. Such filesystems are responsible for
setting the vp->v_vnlock back to the default in their vop_reclaim
routine (e.g., vp->v_vnlock = &vp->v_lock).
In theory, this set of changes cleans up the existing filesystem
lock interface and should have no function change to the existing
locking scheme.
Sponsored by: DARPA & NAI Labs.
vcanrecycle to check a free vnode's availability. If it is
available, vcanrecycle returns an error code of zero and the
vnode in question locked. The getnewvnode routine then used
to call vn_start_write with the V_NOWAIT flag. If the filesystem
was suspended while taking a snapshot, the vn_start_write would
fail but getnewvnode would fail to unlock the vnode, instead
leaving it locked on the freelist. The result would be that the
vnode would be locked forever and would eventually hang the
system with a race to the root when it was attempted to recycle
it. This fix moves the vn_start_write check into vcanrecycle
where it will properly unlock the vnode if it is unavailable
for recycling due to filesystem suspension.
Sponsored by: DARPA & NAI Labs.
interlock in getnewvnode() to avoid possible sleeps while holding
the mutex. Note that the warning from Witness is a slight false
positive since we know there will be no contention on the interlock
since we haven't made the vnode available for use yet, but the theory
is not a bad one.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
- Make the VI asserts more orthogonal to the rest of the asserts by using a
new, common vfs_badlock() function and adding a 'str' arg.
- Adjust generated ASSERTS to match the new prototype.
- Adjust explicit ASSERTS to match the new prototype.
- Enable vfs_badlock_mutex by default.
- Assert that the vp is locked in VOP_UNLOCK.
- Use standard interlock macros in remaining code.
- Correct a race in getnewvnode().
- Lock access to v_numoutput with interlock.
- Lock access to buf lists and splay tree with interlock.
- Add VOP and VI asserts.
- Lock b_vnbufs with the vnode interlock.
- Add vrefcnt() for callers who want to retreive the vnode ref without
holding a lock. Add a comment that describes when this is safe.
- Add vholdl() and vdropl() so that callers who already own the interlock
can avoid race conditions and unnecessary unlocking.
- Move the VOP_GETATTR() in vflush() into the WRITECLOSE conditional case.
- Hold the interlock before droping the mntlist_mtx in vflush() to avoid
a race.
- Fix locking in vfs_msync().
v_tag is now const char * and should only be used for debugging.
Additionally:
1. All users of VT_NTS now check vfsconf->vf_type VFCF_NETWORK
2. The user of VT_PROCFS now checks for the new flag VV_PROCDEP, which
is propagated by pseudofs to all child vnodes if the fs sets PFS_PROCDEP.
Suggested by: phk
Reviewed by: bde, rwatson (earlier version)
LK_INTERLOCK. The interlock will never be held on return from these
functions even when there is an error. Errors typically only occur when
the XLOCK is held which means this isn't the vnode we want anyway. Almost
all users of these interfaces expected this behavior even though it was
not provided before.
with interlock held in error conditions when the caller did not specify
LK_INTERLOCK.
- Add several comments to vn_lock() describing the rational behind the code
flow since it was not immediately obvious.