leaves the firmware event queue (fwq) as the only queue that can take
interrupts for others.
This simplifies cfg_itype_and_nqueues and queue allocation in the driver
at the cost of a little (never?) used configuration. It also allows
service_iq to be split into two specialized variants in the future.
MFC after: 2 months
Sponsored by: Chelsio Communications
- Create a new file, t4_sched.c, and move all of the code related to
traffic management from t4_main.c and t4_sge.c to this file.
- Track both Channel Rate Limiter (ch_rl) and Class Rate Limiter (cl_rl)
parameters in the PF driver.
- Initialize all the cl_rl limiters with somewhat arbitrary default
rates and provide routines to update them on the fly.
- Provide routines to reserve and release traffic classes.
MFC after: 1 month
Sponsored by: Chelsio Communications
- Update struct link_settings and associated shared code.
- Add tunables to control FEC and autonegotiation. All ports inherit
these values as their initial settings.
hw.cxgbe.fec
hw.cxgbe.autoneg
- Add per-port sysctls to control FEC and autonegotiation. These can be
modified at any time.
dev.<port>.<n>.fec
dev.<port>.<n>.autoneg
MFC after: 3 days
Sponsored by: Chelsio Communications
come up as 't6nex' nexus devices with 'cc' ports hanging off them.
The T6 firmware and configuration files will be added as soon as they
are released. For now the driver will try to work with whatever
firmware and configuration is on the card's flash.
Sponsored by: Chelsio Communications
The cxgbev/cxlv driver supports Virtual Function devices for Chelsio
T4 and T4 adapters. The VF devices share most of their code with the
existing PF4 driver (cxgbe/cxl) and as such the VF device driver
currently depends on the PF4 driver.
Similar to the cxgbe/cxl drivers, the VF driver includes a t4vf/t5vf
PCI device driver that attaches to the VF device. It then creates
child cxgbev/cxlv devices representing ports assigned to the VF.
By default, the PF driver assigns a single port to each VF.
t4vf_hw.c contains VF-specific routines from the shared code used to
fetch VF-specific parameters from the firmware.
t4_vf.c contains the VF-specific PCI device driver and includes its
own attach routine.
VF devices are required to use a different firmware request when
transmitting packets (which in turn requires a different CPL message
to encapsulate messages). This alternate firmware request does not
permit chaining multiple packets in a single message, so each packet
results in a firmware request. In addition, the different CPL message
requires more detailed information when enabling hardware checksums,
so parse_pkt() on VF devices must examine L2 and L3 headers for all
packets (not just TSO packets) for VF devices. Finally, L2 checksums
on non-UDP/non-TCP packets do not work reliably (the firmware trashes
the IPv4 fragment field), so IPv4 checksums for such packets are
calculated in software.
Most of the other changes in the non-VF-specific code are to expose
various variables and functions private to the PF driver so that they
can be used by the VF driver.
Note that a limited subset of cxgbetool functions are supported on VF
devices including register dumps, scheduler classes, and clearing of
statistics. In addition, TOE is not supported on VF devices, only for
the PF interfaces.
Reviewed by: np
MFC after: 2 months
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7599