the use of divert sockets to dead locks. A number of LORs have been reported
between divert and a number of other network subsystems including: IPSEC, Pfil,
multicast, ipfw and others. Other dead locks could occur because of recursive
entry into the IP stack. This change should take care of most if not all of
these issues.
A summary of the changes follow:
- We disallow multicast operations on divert sockets. It really doesn't make
semantic sense to allow this, since typically you would set multicast
parameters on multicast end points.
NOTE: As a part of this change, we actually dis-allow multicast options on
any socket that IS a divert socket OR IS NOT a SOCK_RAW or SOCK_DGRAM family
- We check to see if there are any socket options that have been specified on
the socket, and if there was (which is very un-common and also probably
doesnt make sense to support) we duplicate the mbuf carrying the options.
- We then drop the INP/INFO locks over the call to ip_output(). It should be
noted that since we no longer support multicast operations on divert sockets
and we have duplicated any socket options, we no longer need the reference
to the pcb to be coherent.
- Finally, we replaced the call to ip_input() to use netisr queuing. This
should remove the recursive entry into the IP stack from divert.
By dropping the locks over the call to ip_output() we eliminate all the lock
ordering issues above. By switching over to netisr on the inbound path,
we can no longer recursively enter the ip_input() code via divert.
I have tested this change by using the following command:
ipfwpcap -r 8000 - | tcpdump -r - -nn -v
This should exercise the input and re-injection (outbound) path, which is
very similar to the work load performed by natd(8). Additionally, I have
run some ospf daemons which have a heavy reliance on raw sockets and
multicast.
Approved by: re@ (kensmith)
MFC after: 1 month
LOR: 163
LOR: 181
LOR: 202
LOR: 203
Discussed with: julian, andre et al (on freebsd-net)
In collaboration with: bms [1], rwatson [2]
[1] bms helped out with the multicast decisions
[2] rwatson submitted the original netisr patches and came up with some
of the original ideas on how to combat this issue.
protocol entry points using functions named proto_getsockaddr and
proto_getpeeraddr rather than proto_setsockaddr and proto_setpeeraddr.
While it's true that sockaddrs are allocated and set, the net effect is
to retrieve (get) the socket address or peer address from a socket, not
set it, so align names to that intent.
consistent with the naming of other structure field members, and
reducing improper grep matches. Clean up and comment structure
fields in structure definition.
specific privilege names to a broad range of privileges. These may
require some future tweaking.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
( and where appropriate the destruction) of the pcb mutex to the init/finit
functions of the pcb zones.
This allows locking of the pcb entries and race condition free comparison
of the generation count.
Rearrange locking a bit to avoid extra locking operation to update the generation
count in in_pcballoc(). (in_pcballoc now returns the pcb locked)
I am planning to convert pcb list handling from a type safe to a reference count
model soon. ( As this allows really freeing the PCBs)
Reviewed by: rwatson@, mohans@
MFC after: 1 week
except in places dealing with ifaddr creation or destruction; and
in such special places incomplete ifaddrs should never be linked
to system-wide data structures. Therefore we can eliminate all the
superfluous checks for "ifa->ifa_addr != NULL" and get ready
to the system crashing honestly instead of masking possible bugs.
Suggested by: glebius, jhb, ru
pru_abort(), pru_detach(), and in_pcbdetach():
- Universally support and enforce the invariant that so_pcb is
never NULL, converting dozens of unnecessary NULL checks into
assertions, and eliminating dozens of unnecessary error handling
cases in protocol code.
- In some cases, eliminate unnecessary pcbinfo locking, as it is no
longer required to ensure so_pcb != NULL. For example, in protocol
shutdown methods, and in raw IP send.
- Abort and detach protocol switch methods no longer return failures,
nor attempt to free sockets, as the socket layer does this.
- Invoke in_pcbfree() after in_pcbdetach() in order to free the
detached in_pcb structure for a socket.
MFC after: 3 months
rather than an error. Detaches do not "fail", they other occur or
the protocol flags SS_PROTOREF to take ownership of the socket.
soclose() no longer looks at so_pcb to see if it's NULL, relying
entirely on the protocol to decide whether it's time to free the
socket or not using SS_PROTOREF. so_pcb is now entirely owned and
managed by the protocol code. Likewise, no longer test so_pcb in
other socket functions, such as soreceive(), which have no business
digging into protocol internals.
Protocol detach routines no longer try to free the socket on detach,
this is performed in the socket code if the protocol permits it.
In rts_detach(), no longer test for rp != NULL in detach, and
likewise in other protocols that don't permit a NULL so_pcb, reduce
the incidence of testing for it during detach.
netinet and netinet6 are not fully updated to this change, which
will be in an upcoming commit. In their current state they may leak
memory or panic.
MFC after: 3 months
1. Copy a NULL-terminated string into a fixed-length buffer, and
2. copyout that buffer to userland,
we really ought to
0. Zero the entire buffer
first.
Security: FreeBSD-SA-05:08.kmem
from divert sockets.
- Remove div_disconnect() method, since it shouldn't be called now.
- Remove div_abort() method. It was never called directly, since protocol
doesn't have listen queue. It was called only from div_disconnect(),
which is removed now.
Reviewed by: rwatson, maxim
Approved by: julian (mentor)
MT5 after: 1 week
MT4 after: 1 month
and has been broken twice:
- in the beginning of div_output() replace KASSERT with assignment, as
it was in rev. 1.83. [1] [to be MFCed]
- refactor changes introduced in rev. 1.100: do not prepend a new tag
unconditionally. Before doing this check whether we have one. [2]
A small note for all hacking in this area:
when divert socket is not a real userland, but ng_ksocket(4), we receive
_the same_ mbufs, that we transmitted to socket. These mbufs have rcvif,
the tags we've put on them. And we should treat them correctly.
Discussed with: mlaier [1]
Silence from: green [2]
Reviewed by: maxim
Approved by: julian (mentor)
MFC after: 1 week
protocols: it is possible for sockets to be created and attached
to the divert protocol between the test for sockets present and
successful unload of the registration handler. We will need to
explore more mature APIs for unregistering the protocol and then
draining consumers, or an atomic test-and-unregister mechanism.
of protocols. The call to divert_packet() is done through a function pointer. All
semantics of IPDIVERT remain intact. If IPDIVERT is not loaded ipfw will refuse to
install divert rules and natd will complain about 'protocol not supported'. Once
it is loaded both will work and accept rules and open the divert socket. The module
can only be unloaded if no divert sockets are open. It does not close any divert
sockets when an unload is requested but will return EBUSY instead.
and preserves the ipfw ABI. The ipfw core packet inspection and filtering
functions have not been changed, only how ipfw is invoked is different.
However there are many changes how ipfw is and its add-on's are handled:
In general ipfw is now called through the PFIL_HOOKS and most associated
magic, that was in ip_input() or ip_output() previously, is now done in
ipfw_check_[in|out]() in the ipfw PFIL handler.
IPDIVERT is entirely handled within the ipfw PFIL handlers. A packet to
be diverted is checked if it is fragmented, if yes, ip_reass() gets in for
reassembly. If not, or all fragments arrived and the packet is complete,
divert_packet is called directly. For 'tee' no reassembly attempt is made
and a copy of the packet is sent to the divert socket unmodified. The
original packet continues its way through ip_input/output().
ipfw 'forward' is done via m_tag's. The ipfw PFIL handlers tag the packet
with the new destination sockaddr_in. A check if the new destination is a
local IP address is made and the m_flags are set appropriately. ip_input()
and ip_output() have some more work to do here. For ip_input() the m_flags
are checked and a packet for us is directly sent to the 'ours' section for
further processing. Destination changes on the input path are only tagged
and the 'srcrt' flag to ip_forward() is set to disable destination checks
and ICMP replies at this stage. The tag is going to be handled on output.
ip_output() again checks for m_flags and the 'ours' tag. If found, the
packet will be dropped back to the IP netisr where it is going to be picked
up by ip_input() again and the directly sent to the 'ours' section. When
only the destination changes, the route's 'dst' is overwritten with the
new destination from the forward m_tag. Then it jumps back at the route
lookup again and skips the firewall check because it has been marked with
M_SKIP_FIREWALL. ipfw 'forward' has to be compiled into the kernel with
'option IPFIREWALL_FORWARD' to enable it.
DUMMYNET is entirely handled within the ipfw PFIL handlers. A packet for
a dummynet pipe or queue is directly sent to dummynet_io(). Dummynet will
then inject it back into ip_input/ip_output() after it has served its time.
Dummynet packets are tagged and will continue from the next rule when they
hit the ipfw PFIL handlers again after re-injection.
BRIDGING and IPFW_ETHER are not changed yet and use ipfw_chk() directly as
they did before. Later this will be changed to dedicated ETHER PFIL_HOOKS.
More detailed changes to the code:
conf/files
Add netinet/ip_fw_pfil.c.
conf/options
Add IPFIREWALL_FORWARD option.
modules/ipfw/Makefile
Add ip_fw_pfil.c.
net/bridge.c
Disable PFIL_HOOKS if ipfw for bridging is active. Bridging ipfw
is still directly invoked to handle layer2 headers and packets would
get a double ipfw when run through PFIL_HOOKS as well.
netinet/ip_divert.c
Removed divert_clone() function. It is no longer used.
netinet/ip_dummynet.[ch]
Neither the route 'ro' nor the destination 'dst' need to be stored
while in dummynet transit. Structure members and associated macros
are removed.
netinet/ip_fastfwd.c
Removed all direct ipfw handling code and replace it with the new
'ipfw forward' handling code.
netinet/ip_fw.h
Removed 'ro' and 'dst' from struct ip_fw_args.
netinet/ip_fw2.c
(Re)moved some global variables and the module handling.
netinet/ip_fw_pfil.c
New file containing the ipfw PFIL handlers and module initialization.
netinet/ip_input.c
Removed all direct ipfw handling code and replace it with the new
'ipfw forward' handling code. ip_forward() does not longer require
the 'next_hop' struct sockaddr_in argument. Disable early checks
if 'srcrt' is set.
netinet/ip_output.c
Removed all direct ipfw handling code and replace it with the new
'ipfw forward' handling code.
netinet/ip_var.h
Add ip_reass() as general function. (Used from ipfw PFIL handlers
for IPDIVERT.)
netinet/raw_ip.c
Directly check if ipfw and dummynet control pointers are active.
netinet/tcp_input.c
Rework the 'ipfw forward' to local code to work with the new way of
forward tags.
netinet/tcp_sack.c
Remove include 'opt_ipfw.h' which is not needed here.
sys/mbuf.h
Remove m_claim_next() macro which was exclusively for ipfw 'forward'
and is no longer needed.
Approved by: re (scottl)
for structures with timers in them. It might be that a timer might fire
even when the associated structure has already been free'd. Having type-
stable storage in this case is beneficial for graceful failure handling and
debugging.
Discussed with: bosko, tegge, rwatson
make it fully self-contained.
o ip_reass() now returns a new mbuf with the reassembled packet and ip->ip_len
including the IP header.
o Computation of the delayed checksum is moved into divert_packet().
Reviewed by: silby
associated with performing a wakeup on the socket buffer:
- When performing an sbappend*() followed by a so[rw]wakeup(), explicitly
acquire the socket buffer lock and use the _locked() variants of both
calls. Note that the _locked() sowakeup() versions unlock the mutex on
return. This is done in uipc_send(), divert_packet(), mroute
socket_send(), raw_append(), tcp_reass(), tcp_input(), and udp_append().
- When the socket buffer lock is dropped before a sowakeup(), remove the
explicit unlock and use the _locked() sowakeup() variant. This is done
in soisdisconnecting(), soisdisconnected() when setting the can't send/
receive flags and dropping data, and in uipc_rcvd() which adjusting
back-pressure on the sockets.
For UNIX domain sockets running mpsafe with a contention-intensive SMP
mysql benchmark, this results in a 1.6% query rate improvement due to
reduce mutex costs.
SOCK_LOCK(so):
- Hold socket lock over calls to MAC entry points reading or
manipulating socket labels.
- Assert socket lock in MAC entry point implementations.
- When externalizing the socket label, first make a thread-local
copy while holding the socket lock, then release the socket lock
to externalize to userspace.
the syscall arguments and does the suser() permission check, and
kern_mlock(), which does the resource limit checking and calls
vm_map_wire(). Split munlock() in a similar way.
Enable the RLIMIT_MEMLOCK checking code in kern_mlock().
Replace calls to vslock() and vsunlock() in the sysctl code with
calls to kern_mlock() and kern_munlock() so that the sysctl code
will obey the wired memory limits.
Nuke the vslock() and vsunlock() implementations, which are no
longer used.
Add a member to struct sysctl_req to track the amount of memory
that is wired to handle the request.
Modify sysctl_wire_old_buffer() to return an error if its call to
kern_mlock() fails. Only wire the minimum of the length specified
in the sysctl request and the length specified in its argument list.
It is recommended that sysctl handlers that use sysctl_wire_old_buffer()
should specify reasonable estimates for the amount of data they
want to return so that only the minimum amount of memory is wired
no matter what length has been specified by the request.
Modify the callers of sysctl_wire_old_buffer() to look for the
error return.
Modify sysctl_old_user to obey the wired buffer length and clean up
its implementation.
Reviewed by: bms
them mostly with packet tags (one case is handled by using an mbuf flag
since the linkage between "caller" and "callee" is direct and there's no
need to incur the overhead of a packet tag).
This is (mostly) work from: sam
Silence from: -arch
Approved by: bms(mentor), sam, rwatson
the routing table. Move all usage and references in the tcp stack
from the routing table metrics to the tcp hostcache.
It caches measured parameters of past tcp sessions to provide better
initial start values for following connections from or to the same
source or destination. Depending on the network parameters to/from
the remote host this can lead to significant speedups for new tcp
connections after the first one because they inherit and shortcut
the learning curve.
tcp_hostcache is designed for multiple concurrent access in SMP
environments with high contention and is hash indexed by remote
ip address.
It removes significant locking requirements from the tcp stack with
regard to the routing table.
Reviewed by: sam (mentor), bms
Reviewed by: -net, -current, core@kame.net (IPv6 parts)
Approved by: re (scottl)