and do some preparations for handling 12x22 fonts (currently lots of code
implies and/or hardcodes a font width of 8 pixels). This will be required
on sparc64 which uses a default font size of 12x22 in order to add font
loading and saving support as well as to use a syscons(4)-supplied mouse
pointer image.
This API breakage is committed now so it can be MFC'ed in time for 6.0
and later on upcoming framebuffer drivers destined for use on sparc64
and which are expected to rely on using font loading internally and on
a syscons(4)-supplied mouse pointer image can be easily MFC'ed to
RELENG_6 rather than requiring a backport.
Tested on: i386, sparc64, make universe
MFC after: 1 week
- Let creator_bitblt() return ENODEV as it's not implemented (missed
in sys/dev/fb/creator.c rev. 1.6).
- As a speed optimization inline the creator_ras_wait() etc. helper
functions and also cache setting the font increment, font width
and plane mask. [1]
- I got the meaning of V_DISPLAY_BLANK wrong, it's blank like turn
off and not blank like turn on and clear the screen. So move
clearing the screen to creator_clear() were it hopefully belongs.
- Properly implement V_DISPLAY_BLANK, V_DISPLAY_STAND_BY and
V_DISPLAY_SUSPEND. This makes blank_saver.ko and green_saver.ko
work. [1]
- Change the order of operations in creator_fill_rect(), i.e. write
y before x and cy before cx. This fixes drawing the top part of
the border with Elite3D cards when switching from Xorg to a VTY.
- Move setting the chip configuration we use and invalidating the
cache variables to creator_set_mode() and set the V_ADP_MODECHANGE
flag. This causes creator_set_mode() to be called when the X server
shuts down which fixes the screen corruption caused most of the
time by Xorg not restoring the original configuration present at
startup.
Inspired by/based on: Xorg [1]
Approved by: re (scottl)
the number of registered adapters instead of determining again whether
stdout is a supported card (and which might have failed to attach and
register).
- Drop creator_set_mode() and move the relevant parts to creator_fill_rect()
and creator_putc() respectively. This is a bit cleaner than having to
make sure that creator_set_mode() was called before creator_fill_rect()
or creator_putc() are used and matches better what Xorg does.
- Fix a bug in the handling of the FBIOSCURSOR IOCTL; the code was meant
to return ENODEV for all invocations expect when used to disable the
cursor and not just when used for enabling the cursor.
- In case the adapter is the OFW stdout move its OFW cursor to the start
of the last line on halt so OFW output doesn't get intermixed with what
FreeBSD left on the screen. With hindsight this is what the faking of a
hardware cursor which was removed in the last revision really was about,
i.e. to keep the OFW updated about the current cursor position. The new
approach however is simpler while producing the same result and doesn't
cause the first letter of the OFW output to be turned into a blank and
a newline.
- Add variable names to the prototypes of creator_cursor_*() which were
added in the last revision and list them alphabetically in order to match
the style of this file.
- Use register macros instead of magic values in the code. [1]
- Check the return values of OF_getprop() and other stuff that actually
can fail.
- Let the unimplemented video driver methods return ENODEV rather
than 0 so other code isn't tricked into thinking a certain operation
was successfull. In case of e.g. the video driver creator_ioctl()
this caused vidcontrol(1) to return random garbage information.
Remove the TODO macros in the unimplemented video driver methods
which did a printf("%s: unimplemented\n", __func__). Under certain
circumstances these managed to invoke a printf() when a low-level
console device wasn't attached, yet, causing a Fast Data Access MMU
Miss. These macros were only really usefull for development anyway.
- Set the struct video_adapter and struct video_info va_flags and
vi_flags etc. as appropriate.
- In creator_configure() don't rely on hitting the node which is the
chosen console device first when searching the OFW tree for adapters
compatible with this driver. Instead just check whether the chosen
console device is a viable target for this driver. Targets that are
not the console (including additional cards in multi-head configs)
will be attached through creator_upa_attach(). I think this how the
code in creator_configure() was actually meant to work.
Honour the VIO_PROBE_ONLY flag and don't initialise and register the
console device twice when creator_configure() is called a second time
during sc_probe_unit().
Let creator_configure() return the number of the found adapters,
i.e. 1 in case probing succeeds, as it's expected. The return values
of video adapter configure functions however currently aren't checked
so this doesn't make a difference at the moment.
- In creator_upa_attach() don't rely on probing and attaching the
adapter which is the console first, in case there are multiple
adpaters and one of them is the console this could lead into using
the video adapter unit 0 twice.
- Make the check for DACs with inverted cursor control a bit more
precise and actually honour that information when turning the cursor
on or off. Add a helper function creator_cursor_enable() for this
in order to keep code duplication low. [1]
- Don't bother with faking a hardware cursor in case a device is the
console. Apparently this was meant to start kernel output right after
where the firmware left. In general this isn't worth the fuzz and
also had no real effect as creator_set_mode() did clear the screen
in any case, not just in case a device was not the console.
- Implement creator_fill_rect() and use it to actually blank the
display in creator_blank_display() when the mode is V_DISPLAY_BLANK,
moving blanking the display out of creator_set_mode(). Use it also
to implement creator_set_border() so the border can be re-drawn
when switching to a VTY from X, exiting X, etc. (which leaves us
with a black border most of the time).
- Implement the video driver creator_ioctl(), moving the implementation
of the IOCTL interface from the fbN CDEV version of creator_ioctl()
into the video driver version and use the latter to implement the
former. Use fb_commonioctl() to handle most of the FBIO IOCTLs.
This gives programs like vidcontrol(1) which use the video driver
creator_ioctl() a chance of working.
Implement turning off the cursor via the FBIOSCURSOR IOCTL, which
Xorg uses to in order to inform the OS that it's taking over the
cursor. In creator_putm() check whether the cursor is enabled and
(re-)install it if necessary, moving installing the cursor out of
creator_init() and into a helper function creator_cursor_install().
This fixes the missing mouse pointer when switching to a VTY from X,
exiting X, etc.
- Some clean-up (remove unused/useless code, etc.).
o sparc64/creator/creator_upa.c / sparc64/sparc64/sc_machdep.c:
- Attach syscons(4) as an own pseudo-device on the nexus rather than
directly in creator_upa_attach(), similiar to attaching syscons(4)
as a pseudo-device on isa(4) on other archs. This makes it a whole
lot easier to do the right thing in multi-head configs, especially
with different types of graphics adapters. [2]
- Set SC_AUTODETECT_KBD by default so USB keyboards work out of the
box. [2]
Based on/obtained from: Xorg 'ffb' driver [1]
Based on/obtained from: FreeBSD/powerpc [2]
phandle_t. Since both are typedefed to unsigned int, this is more
or less cosmetic.
- Fix the code that determines whether a creator instance was used
for firmware output (and should not be blanked on initialization).
Since r1.2 of dev/fb/creator.c, this consisted comparing a handle of
an instance of a package with a handle of the package itself.
Use the test from r1.1, which utilizes OF_instance_to_package().
Submitted by: Marius Strobl <marius@alchemy.franken.de>
These are fixed resolution and operate only in pixel mode so they present
a challenge to syscons (square peg, round hole, etc, etc). The driver
provides a video driver interface for syscons and a separate character
device for X to mmap. Wherever possible the creator's accelarated graphics
functions are used so text mode is very fast.
Based roughly on the openbsd driver.