1) Fix a bug in the int15 function 87 emulation where we only copied half
of what the BIOS asked for. This caused the Mylex RAID adapter to go
haywire and start trashing memory when you tried to boot from it.
2) Don't use interrupt 19 to reboot. Instead, set the reboot flag to a warm
boot and jump to the BIOS's reboot handler. int 19 doesn't clear memory
or restore the interrupt vector table, and thus really isn't safe. For
example, when booting off of PXE, the PXE BIOS eats up a chunk of memory
for its internal data and structures. Since we rebooted via int 19,
using the 'reboot' command in the loader resulted in that memory not
being reclaimed by the BIOS. Thus, after a few PXE boots, the system
was out of lower memory.
3) Catch any int 19 calls made by a BTX client or a user pressing
Ctrl-Alt-Delete and shutdown BTX and reboot the machine cleanly. This
fixes Ctrl-Alt-Delete in the loader and in boot2 instead of presenting
the user with a BTX fault.
Approved by: jkh
Found by: 1) by msmith
- Fix btxldr to preserve a NULL bootinfo pointer when it copies the kernel
arguments.
- Add the cdldr bootstrap program. This program is tacked onto the
beginning of the standard 3rd stage boot loader (/boot/loader) to form
the CD boot loader (/boot/cdboot). When a CD is booted, the cdboot file
is copied into memory instead and executed. The cdldr stub emulates the
environment normally provided by boot2 and then starts the loader. This
booting method does not emulate a floppy drive, but boots directly off of
the CD. This should fix the problems some BIOS's have with emulating a
2.88 MB floppy image.
- Add support to the loader to recognize that it has been booted by cdldr
instead of boot2 and use a simpler method of extracting the BIOS boot
device.
of %cr0 wasn't reloaded into %eax before being modified to turn protected
mode off if PAGING was not defined. The result was that the processor did
not exit protected mode, so when it tried to jump to segment 0x0 in the
next instruction to clear the prefetch cache like one should when leaving
protected mode, it actually tried to jump to a null selector, causing a
GPF.
NICs. (Finally!) The PCMCIA, ISA and PCI varieties are all supported,
though only the ISA and PCI ones will work on the alpha for now.
PCCARD, ISA and PCI attachments are all provided. Also provided an
ancontrol(8) utility for configuring the NIC, man pages, and updated
pccard.conf.sample. ISA cards are supported in both ISA PnP and hard-wired
mode, although you must configure the kernel explicitly to support the
hardwired mode since you have to know the I/O address and port ahead
of time.
Special thanks to Doug Ambrisko for doing the initial newbus hackery
and getting it to work in infrastructure mode.
USB-EL1202A chipset. Between this and the other two drivers, we should
have support for pretty much every USB ethernet adapter on the market.
The only other USB chip that I know of is the SMC USB97C196, and right
now I don't know of any adapters that use it (including the ones made
by SMC :/ ).
Note that the CATC chip supports a nifty feature: read and write combining.
This allows multiple ethernet packets to be transfered in a single USB
bulk in/out transaction. However I'm again having trouble with large
bulk in transfers like I did with the ADMtek chip, which leads me to
believe that our USB stack needs some work before we can really make
use of this feature. When/if things improve, I intend to revisit the
aue and cue drivers. For now, I've lost enough sanity points.
Kawasaki LSI KL5KUSB101B chip, including the LinkSys USB10T, the
Entrega NET-USB-E45, the Peracom USB Ethernet Adapter, the 3Com
3c19250 and the ADS Technologies USB-10BT. This device is 10mbs
half-duplex only, so there's miibus or ifmedia support. This device
also requires firmware to be loaded into it, however KLSI allows
redistribution of the firmware images (I specifically asked about
this; they said it was ok).
Special thanks to Annelise Anderson for getting me in touch with
KLSI (eventually) and thanks to KLSI for providing the necessary
programming info.
Highlights:
- Add driver files to /sys/dev/usb
- update usbdevs and regenerate attendate files
- update usb_quirks.c
- Update HARDWARE.TXT and RELNOTES.TXT for i386 and alpha
- Update LINT, GENERIC and others for i386, alpha and pc98
- Add man page
- Add module
- Update sysinstall and userconfig.c
for our use. Use the same search order for BIOS memory size functions
as the kernel will later use.
Allow the loader to use all of the detected physical memory (this will
greatly help people trying to load enormous memory disk images).
More correctly handle running out of memory when loading an object.
Use the end of base memory for the top of the heap, rather than
blindly hoping that there is 384k left.
Add copyrights to a couple of files I forgot.
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
USB ethernet chip. Adapters that use this chip include the LinkSys
USB100TX. There are a few others, but I'm not certain of their
availability in the U.S. I used an ADMtek eval board for development.
Note that while the ADMtek chip is a 100Mbps device, you can't really
get 100Mbps speeds over USB. Regardless, this driver uses miibus to
allow speed and duplex mode selection as well as autonegotiation.
Building and kldloading the driver as a module is also supported.
Note that in order to make this driver work, I had to make what some
may consider an ugly hack to sys/dev/usb/usbdi.c. The usbd_transfer()
function will use tsleep() for synchronous transfers that don't complete
right away. This is a problem since there are times when we need to
do sync transfers from an interrupt context (i.e. when reading registers
from the MAC via the control endpoint), where tsleep() us a no-no.
My hack allows the driver to have the code poll for transfer completion
subject to the xfer->timeout timeout rather that calling tsleep().
This hack is controlled by a quirk entry and is only enabled for the
ADMtek device.
Now, I'm sure there are a few of you out there ready to jump on me
and suggest some other approach that doesn't involve a busy wait. The
only solution that might work is to handle the interrupts in a kernel
thread, where you may have something resembling a process context that
makes it okay to tsleep(). This is lovely, except we don't have any
mechanism like that now, and I'm not about to implement such a thing
myself since it's beyond the scope of driver development. (Translation:
I'll be damned if I know how to do it.) If FreeBSD ever aquires such
a mechanism, I'll be glad to revisit the driver to take advantage of
it. In the meantime, I settled for what I perceived to be the solution
that involved the least amount of code changes. In general, the hit
is pretty light.
Also note that my only USB test box has a UHCI controller: I haven't
I don't have a machine with an OHCI controller available.
Highlights:
- Updated usb_quirks.* to add UQ_NO_TSLEEP quirk for ADMtek part.
- Updated usbdevs and regenerated generated files
- Updated HARDWARE.TXT and RELNOTES.TXT files
- Updated sysinstall/device.c and userconfig.c
- Updated kernel configs -- device aue0 is commented out by default
- Updated /sys/conf/files
- Added new kld module directory
Files sysdep.[ch] are now in ${MACHINE_ARCH} subdirectory. Internal
#if's used to identify the platform where removed.
Make rule for target testmain was greatly simplified, because it was
easier simplifying it than changing it to support the new location of
sysdep.[ch].
(a repo-copy was done on sysdep.[ch], of course)
-fschedule-insns as it wasn't such a big win with 2.95 after all.
Add the *BIG* win "-mpreferred-stack-boundary=2" optimiztion submitted by
Dima. GCC 2.95 ensures the stack frame is always properly [opitimally]
aligned by surrounding every function call by code simular to
"addl $-12, %esp" / "addl $12, %esp". Here we need the reduction in space,
with speed not an issue.
All Makefiles now use MACHINE_ARCH for the target architecture.
Unification is required for cross-building.
Tags added to:
sys/boot/Makefile
sys/boot/arc/loader/Makefile
sys/kern/Makefile
usr.bin/cpp/Makefile
usr.bin/gcore/Makefile
usr.bin/truss/Makefile
usr.bin/gcore/Makefile:
fixed typo: MACHINDE -> MACHINE_ARCH
Remove some printf() calls, reduce size of buffers, and abbreviate
some strings.
Hopefully the boot people will fix this spamage after the cut over to
Gcc 2.95.2 as the system compiler.
either one gives us an additional 32 bytes of additional space available
when using EGCS 1.1.2. With GCC 2.95.2 -fforce-addr gives us 12 more bytes,
and adding -fschedule-insns gives us an additional 4 bytes.
Mike says the whole idea of a current device was a bad idea in first place,
and will be doing away with currdev.
Anyway, people are not supposed to even notice this. :-)
Memory" called as function 0x87 of interrupt 0x15. Since the Mylex RAID
adapter's BIOS used this function to access memory (actually PCI bus
space) beyond 16 MB, this patch also allows BTX to address all 4 Gig of
possible address space on i386+. Since the loader does not have room for
4 MB of page tables, this was done by turning off paging.
Paging was turned off via a compile time setting which defaults to off.
To enable paging, simply define the make variable PAGING.
rnordier might want to clean this up later.
Submitted by: W. Gerald Hicks <wghicks@bellsouth.net>,
Bosko Milekic <bmilekic@ares.dsuper.net>
Reviewed by: msmith
Required by: Mylex RAID adapter's BIOS
This happened to be my first "for real" broken world. I had broken
it once before, but nobody noticed, so it didn't count.
So, how do I get the "I broke world and all I got was the lousy t-shirt"
t-shirt?
- Make as much of the makefile for each of the three flavours
(disk, CDROM, net) common.
- Special-case the libalpha startup module on its use in boot1, not
the other way around.
- Build the loader out of a "loader" directory
Reviewed by: mjacob, dfr
* Make it possible to type a filename to boot1 so that it is possible to
recover from fatally broken versions of /boot/loader.
* Make a start at a CD boot program (not yet functional).
the SRM environment. This makes the traditional "boot [/kernel] -s"
and similar things work on the Alpha. Since the flags are appended,
they augment and/or override those from the SRM environment.
a module. Also modified the code to work on FreeBSD/alpha and added
device vr0 to the alpha GENERIC config.
While I was in the neighborhood, I noticed that I was still using
#define NFPX 1 in all of the Makefiles that I'd copied from the fxp
module. I don't really use #define Nfoo X so it didn't matter, but
I decided to customize this correctly anyway.
is, don't assume that SCSI ID corresponds to a unit number of da
device. Unit number of da device is provided by 2nd stage loader
and 3rd stage loader now use it.
- Fix drive letter to display.
Submitted by: IMAI Takeshi <take-i@ceres.dti.ne.jp>
bootable on 1 FDD PC98 machines. (When an external FDD unit is
installed, unit numbers become discontinuous.)
Submitted by: IMAI Takeshi <take-i@ceres.dti.ne.jp>