6 Commits

Author SHA1 Message Date
ken
d0f081c521 Add asynchronous command support to the pass(4) driver, and the new
camdd(8) utility.

CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and
completed CCBs may be retrieved via the CAMIOGET ioctl.  User
processes can use poll(2) or kevent(2) to get notification when
I/O has completed.

While the existing CAMIOCOMMAND blocking ioctl interface only
supports user virtual data pointers in a CCB (generally only
one per CCB), the new CAMIOQUEUE ioctl supports user virtual and
physical address pointers, as well as user virtual and physical
scatter/gather lists.  This allows user applications to have more
flexibility in their data handling operations.

Kernel memory for data transferred via the queued interface is
allocated from the zone allocator in MAXPHYS sized chunks, and user
data is copied in and out.  This is likely faster than the
vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in
configurations with many processors (there are more TLB shootdowns
caused by the mapping/unmapping operation) but may not be as fast
as running with unmapped I/O.

The new memory handling model for user requests also allows
applications to send CCBs with request sizes that are larger than
MAXPHYS.  The pass(4) driver now limits queued requests to the I/O
size listed by the SIM driver in the maxio field in the Path
Inquiry (XPT_PATH_INQ) CCB.

There are some things things would be good to add:

1. Come up with a way to do unmapped I/O on multiple buffers.
   Currently the unmapped I/O interface operates on a struct bio,
   which includes only one address and length.  It would be nice
   to be able to send an unmapped scatter/gather list down to
   busdma.  This would allow eliminating the copy we currently do
   for data.

2. Add an ioctl to list currently outstanding CCBs in the various
   queues.

3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do
   that.

4. Test physical address support.  Virtual pointers and scatter
   gather lists have been tested, but I have not yet tested
   physical addresses or scatter/gather lists.

5. Investigate multiple queue support.  At the moment there is one
   queue of commands per pass(4) device.  If multiple processes
   open the device, they will submit I/O into the same queue and
   get events for the same completions.  This is probably the right
   model for most applications, but it is something that could be
   changed later on.

Also, add a new utility, camdd(8) that uses the asynchronous pass(4)
driver interface.

This utility is intended to be a basic data transfer/copy utility,
a simple benchmark utility, and an example of how to use the
asynchronous pass(4) interface.

It can copy data to and from pass(4) devices using any target queue
depth, starting offset and blocksize for the input and ouptut devices.
It currently only supports SCSI devices, but could be easily extended
to support ATA devices.

It can also copy data to and from regular files, block devices, tape
devices, pipes, stdin, and stdout.  It does not support queueing
multiple commands to any of those targets, since it uses the standard
read(2)/write(2)/writev(2)/readv(2) system calls.

The I/O is done by two threads, one for the reader and one for the
writer.  The reader thread sends completed read requests to the
writer thread in strictly sequential order, even if they complete
out of order.  That could be modified later on for random I/O patterns
or slightly out of order I/O.

camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from
the pass(4) driver and also to send request notifications internally.

For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR)
per CAM CCB on the reading side, and a scatter/gather list
(CAM_DATA_SG) on the writing side.  In addition to testing both
interfaces, this makes any potential reblocking of I/O easier.  No
data is copied between the reader and the writer, but rather the
reader's buffers are split into multiple I/O requests or combined
into a single I/O request depending on the input and output blocksize.

For the file I/O path, camdd(8) also uses a single buffer (read(2),
write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list
(readv(2), writev(2), preadv(2), pwritev(2)) on writes.

Things that would be nice to do for camdd(8) eventually:

1.  Add support for I/O pattern generation.  Patterns like all
    zeros, all ones, LBA-based patterns, random patterns, etc. Right
    Now you can always use /dev/zero, /dev/random, etc.

2.  Add support for a "sink" mode, so we do only reads with no
    writes.  Right now, you can use /dev/null.

3.  Add support for automatic queue depth probing, so that we can
    figure out the right queue depth on the input and output side
    for maximum throughput.  At the moment it defaults to 6.

4.  Add support for SATA device passthrough I/O.

5.  Add support for random LBAs and/or lengths on the input and
    output sides.

6.  Track average per-I/O latency and busy time.  The busy time
    and latency could also feed in to the automatic queue depth
    determination.

sys/cam/scsi/scsi_pass.h:
	Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue
	and fetch asynchronous CAM CCBs respectively.

	Although these ioctls do not have a declared argument, they
	both take a union ccb pointer.  If we declare a size here,
	the ioctl code in sys/kern/sys_generic.c will malloc and free
	a buffer for either the CCB or the CCB pointer (depending on
	how it is declared).  Since we have to keep a copy of the
	CCB (which is fairly large) anyway, having the ioctl malloc
	and free a CCB for each call is wasteful.

sys/cam/scsi/scsi_pass.c:
	Add asynchronous CCB support.

	Add two new ioctls, CAMIOQUEUE and CAMIOGET.

	CAMIOQUEUE adds a CCB to the incoming queue.  The CCB is
	executed immediately (and moved to the active queue) if it
	is an immediate CCB, but otherwise it will be executed
	in passstart() when a CCB is available from the transport layer.

	When CCBs are completed (because they are immediate or
	passdone() if they are queued), they are put on the done
	queue.

	If we get the final close on the device before all pending
	I/O is complete, all active I/O is moved to the abandoned
	queue and we increment the peripheral reference count so
	that the peripheral driver instance doesn't go away before
	all pending I/O is done.

	The new passcreatezone() function is called on the first
	call to the CAMIOQUEUE ioctl on a given device to allocate
	the UMA zones for I/O requests and S/G list buffers.  This
	may be good to move off to a taskqueue at some point.
	The new passmemsetup() function allocates memory and
	scatter/gather lists to hold the user's data, and copies
	in any data that needs to be written.  For virtual pointers
	(CAM_DATA_VADDR), the kernel buffer is malloced from the
	new pass(4) driver malloc bucket.  For virtual
	scatter/gather lists (CAM_DATA_SG), buffers are allocated
	from a new per-pass(9) UMA zone in MAXPHYS-sized chunks.
	Physical pointers are passed in unchanged.  We have support
	for up to 16 scatter/gather segments (for the user and
	kernel S/G lists) in the default struct pass_io_req, so
	requests with longer S/G lists require an extra kernel malloc.

	The new passcopysglist() function copies a user scatter/gather
	list to a kernel scatter/gather list.  The number of elements
	in each list may be different, but (obviously) the amount of data
	stored has to be identical.

	The new passmemdone() function copies data out for the
	CAM_DATA_VADDR and CAM_DATA_SG cases.

	The new passiocleanup() function restores data pointers in
	user CCBs and frees memory.

	Add new functions to support kqueue(2)/kevent(2):

	passreadfilt() tells kevent whether or not the done
	queue is empty.

	passkqfilter() adds a knote to our list.

	passreadfiltdetach() removes a knote from our list.

	Add a new function, passpoll(), for poll(2)/select(2)
	to use.

	Add devstat(9) support for the queued CCB path.

sys/cam/ata/ata_da.c:
	Add support for the BIO_VLIST bio type.

sys/cam/cam_ccb.h:
	Add a new enumeration for the xflags field in the CCB header.
	(This doesn't change the CCB header, just adds an enumeration to
	use.)

sys/cam/cam_xpt.c:
	Add a new function, xpt_setup_ccb_flags(), that allows specifying
	CCB flags.

sys/cam/cam_xpt.h:
	Add a prototype for xpt_setup_ccb_flags().

sys/cam/scsi/scsi_da.c:
	Add support for BIO_VLIST.

sys/dev/md/md.c:
	Add BIO_VLIST support to md(4).

sys/geom/geom_disk.c:
	Add BIO_VLIST support to the GEOM disk class.  Re-factor the I/O size
	limiting code in g_disk_start() a bit.

sys/kern/subr_bus_dma.c:
	Change _bus_dmamap_load_vlist() to take a starting offset and
	length.

	Add a new function, _bus_dmamap_load_pages(), that will load a list
	of physical pages starting at an offset.

	Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios.
	Allow unmapped I/O to start at an offset.

sys/kern/subr_uio.c:
	Add two new functions, physcopyin_vlist() and physcopyout_vlist().

sys/pc98/include/bus.h:
	Guard kernel-only parts of the pc98 machine/bus.h header with
	#ifdef _KERNEL.

	This allows userland programs to include <machine/bus.h> to get the
	definition of bus_addr_t and bus_size_t.

sys/sys/bio.h:
	Add a new bio flag, BIO_VLIST.

sys/sys/uio.h:
	Add prototypes for physcopyin_vlist() and physcopyout_vlist().

share/man/man4/pass.4:
	Document the CAMIOQUEUE and CAMIOGET ioctls.

usr.sbin/Makefile:
	Add camdd.

usr.sbin/camdd/Makefile:
	Add a makefile for camdd(8).

usr.sbin/camdd/camdd.8:
	Man page for camdd(8).

usr.sbin/camdd/camdd.c:
	The new camdd(8) utility.

Sponsored by:	Spectra Logic
MFC after:	1 week
2015-12-03 20:54:55 +00:00
imp
362fcfc1e2 Start each of the license/copyright comments with /*- 2005-01-05 22:34:37 +00:00
ken
24c4b1e75b Rewrite of the CAM error recovery code.
Some of the major changes include:

	- The SCSI error handling portion of cam_periph_error() has
	  been broken out into a number of subfunctions to better
	  modularize the code that handles the hierarchy of SCSI errors.
	  As a result, the code is now much easier to read.

	- String handling and error printing has been significantly
	  revamped.  We now use sbufs to do string formatting instead
	  of using printfs (for the kernel) and snprintf/strncat (for
	  userland) as before.

	  There is a new catchall error printing routine,
	  cam_error_print() and its string-based counterpart,
	  cam_error_string() that allow the kernel and userland
	  applications to pass in a CCB and have errors printed out
	  properly, whether or not they're SCSI errors.  Among other
	  things, this helped eliminate a fair amount of duplicate code
	  in camcontrol.

	  We now print out more information than before, including
	  the CAM status and SCSI status and the error recovery action
	  taken to remedy the problem.

	- sbufs are now available in userland, via libsbuf.  This
	  change was necessary since most of the error printing code
	  is shared between libcam and the kernel.

	- A new transfer settings interface is included in this checkin.
	  This code is #ifdef'ed out, and is primarily intended to aid
	  discussion with HBA driver authors on the final form the
	  interface should take.  There is example code in the ahc(4)
	  driver that implements the HBA driver side of the new
	  interface.  The new transfer settings code won't be enabled
	  until we're ready to switch all HBA drivers over to the new
	  interface.

src/Makefile.inc1,
lib/Makefile:		Add libsbuf.  It must be built before libcam,
			since libcam uses sbuf routines.

libcam/Makefile:	libcam now depends on libsbuf.

libsbuf/Makefile:	Add a makefile for libsbuf.  This pulls in the
			sbuf sources from sys/kern.

bsd.libnames.mk:	Add LIBSBUF.

camcontrol/Makefile:	Add -lsbuf.  Since camcontrol is statically
			linked, we can't depend on the dynamic linker
			to pull in libsbuf.

camcontrol.c:		Use cam_error_print() instead of checking for
			CAM_SCSI_STATUS_ERROR on every failed CCB.

sbuf.9:			Change the prototypes for sbuf_cat() and
			sbuf_cpy() so that the source string is now a
			const char *.  This is more in line wth the
			standard system string functions, and helps
			eliminate warnings when dealing with a const
			source buffer.

			Fix a typo.

cam.c:			Add description strings for the various CAM
			error status values, as well as routines to
			look up those strings.

			Add new cam_error_string() and
			cam_error_print() routines for userland and
			the kernel.

cam.h:			Add a new CAM flag, CAM_RETRY_SELTO.

			Add enumerated types for the various options
			available with cam_error_print() and
			cam_error_string().

cam_ccb.h:		Add new transfer negotiation structures/types.

			Change inq_len in the ccb_getdev structure to
			be "reserved".  This field has never been
			filled in, and will be removed when we next
			bump the CAM version.

cam_debug.h:		Fix typo.

cam_periph.c:		Modularize cam_periph_error().  The SCSI error
			handling part of cam_periph_error() is now
			in camperiphscsistatuserror() and
			camperiphscsisenseerror().

			In cam_periph_lock(), increase the reference
			count on the periph while we wait for our lock
			attempt to succeed so that the periph won't go
			away while we're sleeping.

cam_xpt.c:		Add new transfer negotiation code.  (ifdefed
			out)

			Add a new function, xpt_path_string().  This
			is a string/sbuf analog to xpt_print_path().

scsi_all.c:		Revamp string handing and error printing code.
			We now use sbufs for much of the string
			formatting code.  More of that code is shared
			between userland the kernel.

scsi_all.h:		Get rid of SS_TURSTART, it wasn't terribly
			useful in the first place.

			Add a new error action, SS_REQSENSE.  (Send a
			request sense and then retry the command.)
			This is useful when the controller hasn't
			performed autosense for some reason.

			Change the default actions around a bit.

scsi_cd.c,
scsi_da.c,
scsi_pt.c,
scsi_ses.c:		SF_RETRY_SELTO -> CAM_RETRY_SELTO.  Selection
			timeouts shouldn't be covered by a sense flag.

scsi_pass.[ch]:		SF_RETRY_SELTO -> CAM_RETRY_SELTO.

			Get rid of the last vestiges of a read/write
			interface.

libkern/bsearch.c,
sys/libkern.h,
conf/files:		Add bsearch.c, which is needed for some of the
			new table lookup routines.

aic7xxx_freebsd.c:	Define AHC_NEW_TRAN_SETTINGS if
			CAM_NEW_TRAN_CODE is defined.

sbuf.h,
subr_sbuf.c:		Add the appropriate #ifdefs so sbufs can
			compile and run in userland.

			Change sbuf_printf() to use vsnprintf()
			instead of kvprintf(), which is only available
			in the kernel.

			Change the source string for sbuf_cpy() and
			sbuf_cat() to be a const char *.

			Add __BEGIN_DECLS and __END_DECLS around
			function prototypes since they're now exported
			to userland.

kdump/mkioctls:		Include stdio.h before cam.h since cam.h now
			includes a function with a FILE * argument.

Submitted by:	gibbs (mostly)
Reviewed by:	jdp, marcel (libsbuf makefile changes)
Reviewed by:	des (sbuf changes)
Reviewed by:	ken
2001-03-27 05:45:52 +00:00
peter
3b842d34e8 $Id$ -> $FreeBSD$ 1999-08-28 01:08:13 +00:00
ken
2bb789d7a3 Add a number of interrelated CAM feature enhancements and bug fixes.
NOTE:  These changes will require recompilation of any userland
applications, like cdrecord, xmcd, etc., that use the CAM passthrough
interface.  A make world is recommended.

camcontrol.[c8]:
 - We now support two new commands, "tags" and "negotiate".

	- The tags commands allows users to view the number of tagged
	  openings for a device as well as a number of other related
	  parameters, and it allows users to set tagged openings for
	  a device.

	- The negotiate command allows users to enable and disable
	  disconnection and tagged queueing, set sync rates, offsets
	  and bus width.  Note that not all of those features are
	  available for all controllers.  Only the adv, ahc, and ncr
	  drivers fully support all of the features at this point.
	  Some cards do not allow the setting of sync rates, offsets and
	  the like, and some of the drivers don't have any facilities to
	  do so.  Some drivers, like the adw driver, only support enabling
	  or disabling sync negotiation, but do not support setting sync
	  rates.

 - new description in the camcontrol man page of how to format a disk
 - cleanup of the camcontrol inquiry command
 - add support in the 'devlist' command for skipping unconfigured devices if
   -v was not specified on the command line.
 - make use of the new base_transfer_speed in the path inquiry CCB.
 - fix CCB bzero cases

cam_xpt.c, cam_sim.[ch], cam_ccb.h:

 - new flags on many CCB function codes to designate whether they're
   non-immediate, use a user-supplied CCB, and can only be passed from
   userland programs via the xpt device.  Use these flags in the transport
   layer and pass driver to categorize CCBs.

 - new flag in the transport layer device matching code for device nodes
   that indicates whether a device is unconfigured

 - bump the CAM version from 0x10 to 0x11

 - Change the CAM ioctls to use the version as their group code, so we can
   force users to recompile code even when the CCB size doesn't change.

 - add + fill in a new value in the path inquiry CCB, base_transfer_speed.
   Remove a corresponding field from the cam_sim structure, and add code to
   every SIM to set this field to the proper value.

 - Fix the set transfer settings code in the transport layer.

scsi_cd.c:

 - make some variables volatile instead of just casting them in various
   places
 - fix a race condition in the changer code
 - attach unless we get a "logical unit not supported" error.  This should
   fix all of the cases where people have devices that return weird errors
   when they don't have media in the drive.

scsi_da.c:

 - attach unless we get a "logical unit not supported" error

scsi_pass.c:

 - for immediate CCBs, just malloc a CCB to send the user request in.  This
   gets rid of the 'held' count problem in camcontrol tags.

scsi_pass.h:

 - change the CAM ioctls to use the CAM version as their group code.

adv driver:

 - Allow changing the sync rate and offset separately.

adw driver

 - Allow changing the sync rate and offset separately.

aha driver:

 - Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs.

ahc driver:

 - Allow setting offset and sync rate separately

bt driver:

 - Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs.

NCR driver:

 - Fix the ultra/ultra 2 negotiation bug
 - allow setting both the sync rate and offset separately

Other HBA drivers:
 - Put code in to set the base_transfer_speed field for
   XPT_GET_TRAN_SETTINGS CCBs.

Reviewed by:	gibbs, mjacob (isp), imp (aha)
1999-05-06 20:16:39 +00:00
gibbs
cb986cde46 SCSI Peripheral drivers for CAM:
da	- Direct Access Devices (disks, optical devices, SS disks)
	cd	- CDROM (or devices that can act like them, WORM, CD-RW, etc)
	ch	- Medium Changer devices.
	sa	- Sequential Access Devices (tape drives)
	pass	- Application pass-thru driver
	targ	- Target Mode "Processor Target" Emulator
	pt	- Processor Target Devices (scanners, cpus, etc.)

Submitted by:	The CAM Team
1998-09-15 06:36:34 +00:00