This way we know how to connect to secondary node when we are primary.
The same variable is used by the secondary node - it only accepts
connections from the address stored in 'remote' variable.
In cluster configurations it is common that each node has its individual
IP address and there is one addtional shared IP address which is assigned
to primary node. It seems it is possible that if the shared IP address is
from the same network as the individual IP address it might be choosen by
the kernel as a source address for connection with the secondary node.
Such connection will be rejected by secondary, as it doesn't come from
primary node individual IP.
Add 'source' variable that allows to specify source IP address we want to
bind to before connecting to the secondary node.
MFC after: 1 week
- HOLE - it simply turns all-zero blocks into few bytes header;
it is extremely fast, so it is turned on by default;
it is mostly intended to speed up initial synchronization
where we expect many zeros;
- LZF - very fast algorithm by Marc Alexander Lehmann, which shows
very decent compression ratio and has BSD license.
MFC after: 2 weeks
secondary, which died between send(2) and recv(2). Do it by adding timeout
to recv(2) for primary incoming and outgoing sockets and secondary outgoing
socket.
Reported by: Mikolaj Golub <to.my.trociny@gmail.com>
Tested by: Mikolaj Golub <to.my.trociny@gmail.com>
MFC after: 3 days
HAST allows to transparently store data on two physically separated machines
connected over the TCP/IP network. HAST works in Primary-Secondary
(Master-Backup, Master-Slave) configuration, which means that only one of the
cluster nodes can be active at any given time. Only Primary node is able to
handle I/O requests to HAST-managed devices. Currently HAST is limited to two
cluster nodes in total.
HAST operates on block level - it provides disk-like devices in /dev/hast/
directory for use by file systems and/or applications. Working on block level
makes it transparent for file systems and applications. There in no difference
between using HAST-provided device and raw disk, partition, etc. All of them
are just regular GEOM providers in FreeBSD.
For more information please consult hastd(8), hastctl(8) and hast.conf(5)
manual pages, as well as http://wiki.FreeBSD.org/HAST.
Sponsored by: FreeBSD Foundation
Sponsored by: OMCnet Internet Service GmbH
Sponsored by: TransIP BV