requiring the per-process spinlock to only requiring the process lock.
- Reflect these changes in the proc.h documentation and consumers throughout
the kernel. This is a substantial reduction in locking cost for these
fields and was made possible by recent changes to threading support.
conjuction with 'thread' argument passing which is always curthread.
Remove the unuseful extra-argument and pass explicitly curthread to lower
layer functions, when necessary.
KPI results broken by this change, which should affect several ports, so
version bumping and manpage update will be further committed.
Tested by: kris, pho, Diego Sardina <siarodx at gmail dot com>
kthread_add() takes the same parameters as the old kthread_create()
plus a pointer to a process structure, and adds a kernel thread
to that process.
kproc_kthread_add() takes the parameters for kthread_add,
plus a process name and a pointer to a pointer to a process instead of just
a pointer, and if the proc * is NULL, it creates the process to the
specifications required, before adding the thread to it.
All other old kthread_xxx() calls return, but act on (struct thread *)
instead of (struct proc *). One reason to change the name is so that
any old kernel modules that are lying around and expect kthread_create()
to make a process will not just accidentally link.
fix top to show kernel threads by their thread name in -SH mode
add a tdnam formatting option to ps to show thread names.
make all idle threads actual kthreads and put them into their own idled process.
make all interrupt threads kthreads and put them in an interd process
(mainly for aesthetic and accounting reasons)
rename proc 0 to be 'kernel' and it's swapper thread is now 'swapper'
man page fixes to follow.
from Mac OS X Leopard--rationalize naming for entry points to
the following general forms:
mac_<object>_<method/action>
mac_<object>_check_<method/action>
The previous naming scheme was inconsistent and mostly
reversed from the new scheme. Also, make object types more
consistent and remove spaces from object types that contain
multiple parts ("posix_sem" -> "posixsem") to make mechanical
parsing easier. Introduce a new "netinet" object type for
certain IPv4/IPv6-related methods. Also simplify, slightly,
some entry point names.
All MAC policy modules will need to be recompiled, and modules
not updates as part of this commit will need to be modified to
conform to the new KPI.
Sponsored by: SPARTA (original patches against Mac OS X)
Obtained from: TrustedBSD Project, Apple Computer
- Depessimize userret() in kernels where KTRACE is enabled by doing an
unlocked check of the per-process queue of pending events before
acquiring any locks. Previously ktr_userret() unconditionally acquired
the global ktrace_sx lock on every return to userland for every thread,
even if ktrace wasn't enabled for the thread.
- Optimize the locking in exit() to first perform an unlocked read of
p_traceflag to see if ktrace is enabled and only acquire locks and
teardown ktrace if the test succeeds. Also, explicitly disable tracing
before draining any pending events so the pending events actually get
written out. The unlocked read is safe because proc lock is acquired
earlier after single-threading so p_traceflag can't change between then
and this check (well, it can currently due to a bug in ktrace I will fix
next, but that race existed prior to this change as well).
Reviewed by: rwatson
This patch fixes places where they should be called atomically changing
their locking requirements (both assume per-proc spinlock held) and
introducing rufetchcalc which wrappers both calls to be performed in
atomic way.
Reviewed by: jeff
Approved by: jeff (mentor)
- Unsafeness on ruadd() in thread_exit()
- Unatomicity of thread_exiit() in the exit1() operations
This patch addresses these problems allocating p_fd as part of the
process and modifying the way it is accessed.
A small chunk of this patch, resolves a race about p_state in kern_wait(),
since we have to be sure about the zombif-ing process.
Submitted by: jeff
Approved by: jeff (mentor)
embedded storage in struct ucred. This allows audit state to be cached
with the thread, avoiding locking operations with each system call, and
makes it available in asynchronous execution contexts, such as deep in
the network stack or VFS.
Reviewed by: csjp
Approved by: re (kensmith)
Obtained from: TrustedBSD Project
- Use thread_lock() rather than sched_lock for per-thread scheduling
sychronization.
- Use the per-process spinlock rather than the sched_lock for per-process
scheduling synchronization.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
td_ru. This removes the requirement for per-process synchronization in
statclock() and mi_switch(). This was previously supported by
sched_lock which is going away. All modifications to rusage are now
done in the context of the owning thread. reads proceed without locks.
- Aggregate exiting threads rusage in thread_exit() such that the exiting
thread's rusage is not lost.
- Provide a new routine, rufetch() to fetch an aggregate of all rusage
structures from all threads in a process. This routine must be used
in any place requiring a rusage from a process prior to it's exit. The
exited process's rusage is still available via p_ru.
- Aggregate tick statistics only on demand via rufetch() or when a thread
exits. Tick statistics are kept in the thread and protected by sched_lock
until it exits.
Initial patch by: attilio
Reviewed by: attilio, bde (some objections), arch (mostly silent)
SIGCHLD/kevent(2) notification of process termination and wait(). Now
we no longer drop locks between sending the notification and marking
the process as a zombie. Previously, if another process attempted to do
a wait() with W_NOHANG after receiving a SIGCHLD or kevent and locked
the process while the exiting thread was in cpu_exit(), then wait() would
fail to find the process, which is quite astonishing to the process
calling wait().
MFC after: 3 days
- Remove also "MP SAFE" after prior "MPSAFE" pass. (suggested by bde)
- Remove extra blank lines in some cases.
- Add extra blank lines in some cases.
- Remove no-op comments consisting solely of the function name, the word
"syscall", or the system call name.
- Add punctuation.
- Re-wrap some comments.
system calls now enter without Giant held, and then in some cases, acquire
Giant explicitly.
Remove a number of other MPSAFE annotations in the credential code and
tweak one or two other adjacent comments.
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
protect the vnode, it was present to synchronize access to TTY session
information between exit(2) and the TTY code. While we are here, note that
Giant is required for TTY protection.
Clue from: bde
Discussed with: jhb
MFC after: 1 week
vmspace_exitfree() and vmspace_free() which could result in the same
vmspace being freed twice.
Factor out part of exit1() into new function vmspace_exit(). Attach
to vmspace0 to allow old vmspace to be freed earlier.
Add new function, vmspace_acquire_ref(), for obtaining a vmspace
reference for a vmspace belonging to another process. Avoid changing
vmspace refcount from 0 to 1 since that could also lead to the same
vmspace being freed twice.
Change vmtotal() and swapout_procs() to use vmspace_acquire_ref().
Reviewed by: alc
doesn't appear to be protecting anything. Most of consumers funsetownlst(9)
do not appear to be picking up Giant anywhere. This was originally a part
of my Giant exit(2) clean up revision 1.272 but I thought it was a good idea
to leave it out until we were able to analyze it better.
Tested by: kris
MFC after: 3 weeks
- Reorder the events in exit(2) slightly so that we trigger the S_EXIT
stop event earlier. After we have signalled that, we set P_WEXIT and
then wait for any processes with a hold on the vmspace via PHOLD to
release it. PHOLD now KASSERT()'s that P_WEXIT is clear when it is
invoked, and PRELE now does a wakeup if P_WEXIT is set and p_lock drops
to zero.
- Change proc_rwmem() to require that the processing read from has its
vmspace held via PHOLD by the caller and get rid of all the junk to
screw around with the vmspace reference count as we no longer need it.
- In ptrace() and pseudofs(), treat a process with P_WEXIT set as if it
doesn't exist.
- Only do one PHOLD in kern_ptrace() now, and do it earlier so it covers
FIX_SSTEP() (since on alpha at least this can end up calling proc_rwmem()
to clear an earlier single-step simualted via a breakpoint). We only
do one to avoid races. Also, by making the EINVAL error for unknown
requests be part of the default: case in the switch, the various
switch cases can now just break out to return which removes a _lot_ of
duplicated PRELE and proc unlocks, etc. Also, it fixes at least one bug
where a LWP ptrace command could return EINVAL with the proc lock still
held.
- Changed the locking for ptrace_single_step(), ptrace_set_pc(), and
ptrace_clear_single_step() to always be called with the proc lock
held (it was a mixed bag previously). Alpha and arm have to drop
the lock while the mess around with breakpoints, but other archs
avoid extra lock release/acquires in ptrace(). I did have to fix a
couple of other consumers in kern_kse and a few other places to
hold the proc lock and PHOLD.
Tested by: ps (1 mostly, but some bits of 2-4 as well)
MFC after: 1 week
Keep accounting time (in per-cpu) cputicks and the statistics counts
in the thread and summarize into struct proc when at context switch.
Don't reach across CPUs in calcru().
Add code to calibrate the top speed of cpu_tickrate() for variable
cpu_tick hardware (like TSC on power managed machines).
Don't enforce monotonicity (at least for now) in calcru. While the
calibrated cpu_tickrate ramps up it may not be true.
Use 27MHz counter on i386/Geode.
Use TSC on amd64 & i386 if present.
Use tick counter on sparc64
Keep track of time spent by the cpu in various contexts in units of
"cputicks" and scale to real-world microsec^H^H^H^H^H^H^H^Hclock_t
only when somebody wants to inspect the numbers.
For now "cputicks" are still derived from the current timecounter
and therefore things should by definition remain sensible also on
SMP machines. (The main reason for this first milestone commit is
to verify that hypothesis.)
On slower machines, the avoided multiplications to normalize timestams
at every context switch, comes out as a 5-7% better score on the
unixbench/context1 microbenchmark. On more modern hardware no change
in performance is seen.
reliability when tracing fast-moving processes or writing traces to
slow file systems by avoiding unbounded queueuing and dropped records.
Record loss was previously possible when the global pool of records
become depleted as a result of record generation outstripping record
commit, which occurred quickly in many common situations.
These changes partially restore the 4.x model of committing ktrace
records at the point of trace generation (synchronous), but maintain
the 5.x deferred record commit behavior (asynchronous) for situations
where entering VFS and sleeping is not possible (i.e., in the
scheduler). Records are now queued per-process as opposed to
globally, with processes responsible for committing records from their
own context as required.
- Eliminate the ktrace worker thread and global record queue, as they
are no longer used. Keep the global free record list, as records
are still used.
- Add a per-process record queue, which will hold any asynchronously
generated records, such as from context switches. This replaces the
global queue as the place to submit asynchronous records to.
- When a record is committed asynchronously, simply queue it to the
process.
- When a record is committed synchronously, first drain any pending
per-process records in order to maintain ordering as best we can.
Currently ordering between competing threads is provided via a global
ktrace_sx, but a per-process flag or lock may be desirable in the
future.
- When a process returns to user space following a system call, trap,
signal delivery, etc, flush any pending records.
- When a process exits, flush any pending records.
- Assert on process tear-down that there are no pending records.
- Slightly abstract the notion of being "in ktrace", which is used to
prevent the recursive generation of records, as well as generating
traces for ktrace events.
Future work here might look at changing the set of events marked for
synchronous and asynchronous record generation, re-balancing queue
depth, timeliness of commit to disk, and so on. I.e., performing a
drain every (n) records.
MFC after: 1 month
Discussed with: jhb
Requested by: Marc Olzheim <marcolz at stack dot nl>
-Change unconditional aquisition of Giant to only pickup Giant if the vnode
for the controlling tty resides on a non-mpsafe file system.
-Pickup Giant around executable vnode reference counting operations only if
the executable resides on a non-mpsafe file system.
-If this process is being traced, pickup Giant for trace file reference count
operations only if it resides on a non-mpsafe file system.
Discussed with: jhb
Tested by: kris
For each child process whose status has been changed, a SIGCHLD instance
is queued, if the signal is stilling pending, and process changed status
several times, signal information is updated to reflect latest process
status. If wait() returns because the status of a child process is
available, pending SIGCHLD signal associated with the child process is
discarded. Any other pending SIGCHLD signals remain pending.
The signal information is allocated at the same time when proc structure
is allocated, if process signal queue is fully filled or there is a memory
shortage, it can still send the signal to process.
There is a booting time tunable kern.sigqueue.queue_sigchild which
can control the behavior, setting it to zero disables the SIGCHLD queueing
feature, the tunable will be removed if the function is proved that it is
stable enough.
Tested on: i386 (SMP and UP)
clock are supported. I have plan to merge XSI timer ITIMER_REAL and other
two CPU timers into the new code, current three slots are available for
the XSI timers.
The SIGEV_THREAD notification type is not supported yet because our
sigevent struct lacks of two member fields:
sigev_notify_function
sigev_notify_attributes
I have found the sigevent is used in AIO, so I won't add the two members
unless the AIO code is adjusted.
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
hokie and much more readable and expand the comment to explain why it is
the way that it is.
- Close a race where one CPU could free the process belonging to a thread
on another CPU that hasn't quite finished exiting yet but is beyond the
point of setting the process state as PRS_ZOMBIE.
Reported and tested by: ps (2)
MFC after: 3 days