hardly MD, since all our platforms share the same macro. It's not
really compiler dependent either, but this helps in reducing
<machine/ansi.h> to only type definitions.
threaded VM pagezero kthread outside of Giant. For some platforms, this
is really easy since it can just use the direct mapped region. For others,
IPI sending is involved or there are other issues, so grab Giant when
needed.
We still have preemption issues to deal with, but Alan Cox has an
interesting suggestion on how to minimize the problem on x86.
Use Luigi's hack for preserving the (lack of) priority.
Turn the idle zeroing back on since it can now actually do something useful
outside of Giant in many cases.
- Initialize lock structure in vncache_alloc
- Return locked vnodes from vncache_alloc
- Setup vnode op vectors to use default lock, unlock, and islocked
- Implement simple locking scheme required for lookup
mappings from the page tables, which were mapped with PG_G! We could
reuse the page table entry for another mapping (pmap_mapdev) but it
would never have cleared any remaining PG_G TLB entries.
pmap_swapin_proc/pmap_swapout_proc functions from the MD pmap code
and use a single equivalent MI version. There are other cleanups
needed still.
While here, use the UMA zone hooks to keep a cache of preinitialized
proc structures handy, just like the thread system does. This eliminates
one dependency on 'struct proc' being persistent even after being freed.
There are some comments about things that can be factored out into
ctor/dtor functions if it is worth it. For now they are mostly just
doing statistics to get a feel of how it is working.
the actual code. Both use a ";" (not a ",") to delimit entries.
PR: 39679
Submitted by: Cyrille Lefevre <cyrille.lefevre@laposte.net>
MFC after: 3 days
Tell vop_strategy_pre() to use this instead.
- Ignore B_CLUSTER bufs. Their components are locked but they don't really
exist so they don't have to be. This isn't ideal but it is safe.
vm_mmap() as well as the GETATTR etc.
- If the handle is a vnode in vm_mmap() assert that it is locked.
- Wiggle Giant around a little to account for the extra vnode operation.
- Cache a pointer to the vnode's object in the buf.
- Hold a reference to that object in addition to the vnode's reference just
to be consistent.
- Cleanup code that got the object indirectly through the vp and VOP calls.
This fixes at least one case where we were calling GETVOBJECT without a lock.
It also avoids an expensive layered call at the cost of another pointer in
struct buf.
- Grab the vnode object early in exec when we still have the vnode lock.
- Cache the object in the image_params.
- Make use of the cached object in imgact_*.c
- Switch to the new vop_strategy_pre for lock validation.
VOP_STRATEGY requires only that the buf is locked UNLESS the block numbers need
to be translated. There may be other reasons, but as long as the underlying
layer uses a VOP to perform the operations they will be caught later.
- Disable original vop_strategy lock specification.
- Switch to the new vop_strategy_pre for lock validation.
VOP_STRATEGY requires only that the buf is locked UNLESS the block numbers need
to be translated. There may be other reasons, but as long as the underlying
layer uses a VOP to perform the operations they will be caught later.
in the VOP inlines. This is intended to replace the simple locking
specifications for calls that have more complicated behavior such as rename and
lookup.
The syntax of the new entries is:
#! name pre/post function
If the function is marked 'pre' it is executed prior to calling the VOP and
takes a pointer to a struct vop_{name}_args as it's only parameter.
If the function is marked 'post' it is executed after the VOP call and takes
a pointer to a struct vop_{name}_args as it's first parameter and the integer
return value from the vop as the second paramter.