are machine dependent because they are not required to update the tlb when
mappings are added or removed, and doing so is machine dependent.
In addition, an implementation may require that pages mapped with pmap_kenter
have a backing vm_page_t, which is not necessarily true of all physical
pages, and so may choose to pass the vm_page_t to pmap_kenter instead of the
physical address in order to make this requirement clear.
not save (restore) the global pointer (GP) in the jmpbuf in setjmp
(longjmp) because it's not needed in general. GP is considered a
scratch register at callsites and hence is always restored after a
call (when it's possible that the call resolves to a symbol in a
different loadmodule; otherwise GP does not have to be saved and
restored at all), including calls to setjmp/longjmp. There's just
one problem with this now that we use setjmp/longjmp for context
switching: A new context must have GP defined properly for the
thread's entry point. This means that we need to put GP in the
jmpbuf and consequently that we have to restore is in longjmp.
This automaticly requires us to save it as well.
When setjmp/longjmp isn't used for context switching, this can be
reverted again.
the J_SIG0 field. While here, rename J_SIG0 to J_SIGSET and
remove J_SIG1. The main reason for this change is that the
128-bit sigset_t is now aligned on a 16-byte boundary, which
allows us to use 16-byte atomic loads and stores on CPUs that
support it. The removal of J_SIG1 is done to avoid confusion:
it is never accessed and should not be. Renaming J_SIG0 to
J_SIGSET is the icing on the cake that's better done now than
later.
o Add a MD header private to libc called _fpmath.h; this header
contains bitfield layouts of MD floating-point types.
o Add a MI header private to libc called fpmath.h; this header
contains bitfield layouts of MI floating-point types.
o Add private libc variables to lib/libc/$arch/gen/infinity.c for
storing NaN values.
o Add __double_t and __float_t to <machine/_types.h>, and provide
double_t and float_t typedefs in <math.h>.
o Add some C99 manifest constants (FP_ILOGB0, FP_ILOGBNAN, HUGE_VALF,
HUGE_VALL, INFINITY, NAN, and return values for fpclassify()) to
<math.h> and others (FLT_EVAL_METHOD, DECIMAL_DIG) to <float.h> via
<machine/float.h>.
o Add C99 macro fpclassify() which calls __fpclassify{d,f,l}() based
on the size of its argument. __fpclassifyl() is never called on
alpha because (sizeof(long double) == sizeof(double)), which is good
since __fpclassifyl() can't deal with such a small `long double'.
This was developed by David Schultz and myself with input from bde and
fenner.
PR: 23103
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
(significant portions)
Reviewed by: bde, fenner (earlier versions)
and instead add platform, firmware and EFI stubs to the loader.
The net effect of this change is that besides a special console and
disk driver, the kernel has no knowledge of the simulator. This has
the following advantages:
o Simulator support is much harder to break,
o It's easier to make use of more feature complete simulators.
This would only need a change in the simulator specific loader,
o Running SMP kernels within the simulator. Note that ski at this
time does not simulate IPIs, so there's no way to start APs.
The platform, firmware and EFI stubs describe the following hardware:
o 4 CPU Itanium,
o 128 MB RAM within the 4GB address space,
o 64 MB RAM above the 4GB address space.
NOTE: The stubs in the skiloader describe a machine that should in
parts be defined by the simulator. Things like processor interrupt
block and AP wakeup vector cannot be choosen at random because they
require interpretation by the simulator. Currently the simulator is
ignorant of this.
This change introduces an unofficial SSC call SSC_SAL_SET_VECTORS
which is ignored by the simulator.
Tested with: ski (version 0.943 for linux)
CLOCK_VECTOR and define it as 254, not 255. Vector 255 is already
in use as the AP wakeup vector on the HP rx2600.
This needs to be made more dynamic. The likelyhood of vector 254
being in use is pretty small, but we already have code to assign
vectors to IPIs (see sal.c) and it's preobably better to have a
centralized "vector manager" that hands out vectors based on
some imput (like priority).
handleclock itself is trivial.
While here, replace (itc_frequency+hz/2)/hz with itm_reload for
consistency. There's now a single place where we determine the
ITM reload value.
interrupt block). We use the previously hardcoded address as a
default only, but will otherwise use whatever ACPI tells us.
The address can be found in the MADT table header or in the
LAPIC override table entry.
space most of the time, but handles machines with lots of I/O
(S)APICs. We cannot make this more dynamic without breaking the
interface with vmstat. Hence, we need to fix the interface first.
devices aren't necessarily mapped within 4GB. I/O port addresses
are offsets into the memory mapped I/O port space, which is not
larger than 16MB. No need to convert those to 64 bit types.
The HCDP table is one (non-proprietary) way for the platform to
inform the OS about headless operation. This field would normally
hold the address as can be found by scanning the EFI system table,
which we also pass to the kernel. The apparent duplication allows
us to synthesize a HCDP table in the loader by whatever means we
can think of, including relocating the platform table into pre-
mapped address space. In short: it gives us more freedom.
Approved by: re (blanket)
Add function map_port_space() to map the memory mapped I/O port
range as uncacheable virtual memory and call it prior to probing
for a console. This removes the dependency on the loader to have
done this for us. Note that this change does not include doing
the same for APs.
Approved by: re (blanket)
to worry about ABI vs released systems yet. This is mostly transparent
since there is no significant exposure in the syscall interface. The
things that go wrong are mostly userland stuff - time(&intvariable).
Reviewed by: dfr, marcel
Approved by: re (jhb)
Don't force 16-byte alignment at run-time. Do it at compile-time.
This saves us the pointer fiddling by the setjmp functions and
reduces complexity. While here, increase the jmp_buf by 16 bytes
to an even 512 bytes. Coincidentally, due to the way alignment
was handled prior to this change, the jmp_buf has not changed in
size, but only in how the space is used. Prior to this change
the 16 bytes were reserved for enforcing alignment; now they are
reserved by us for future extensions.
Therefore, this ABI breaker is relatively save: the failure is
always an alignment trap.
have f16-f31 as part of the context. The PCB has been reorganized to
better match how we save and restore the (preserved) registers. This
commit also moves the context restoriation to its own function (named
pcb_restore), as we did with pcb_save.
Only minimal effort has been put in writing optimal assembly. The
expectation is that there will be more rounds of changes.
from all low-level bus space support functions. There's no need
to actually force the read/write to be accepted by the platform
before we can do anything else. We still have the mf instruction
there, which forces ordering. This too is not required given the
semantices of the bus space I/O functions, but it's not at all
clear to me if there are any poorly written device drivers that
depend on the strict ordering by the processor. The motto here is
to take small steps...
o Properly set the pointer to the counter for each interrupt and
update the intrnames table.
o Remove Alpha cruft from intrcnt.h.
o Create INTRNAME_LEN as the single entity that defines the width
of the names in the intrnames table (incl. terminatinf '\0').
handling clean and functional as 5.x evolves. This allows some of the
nasty bandaids in the 5.x codepaths to be unwound.
Encapsulate 4.x signal handling under COMPAT_FREEBSD4 (there is an
anti-foot-shooting measure in place, 5.x folks need this for a while) and
finish encapsulating the older stuff under COMPAT_43. Since the ancient
stuff is required on alpha (longjmp(3) passes a 'struct osigcontext *'
to the current sigreturn(2), instead of the 'ucontext_t *' that sigreturn
is supposed to take), add a compile time check to prevent foot shooting
there too. Add uniform COMPAT_43 stubs for ia64/sparc64/powerpc.
Tested on: i386, alpha, ia64. Compiled on sparc64 (a few days ago).
Approved by: re
by using the linker hooks. Since these hooks are called for the
kernel as well, we don't need to deal with that with a special
SYSINIT. The initialization implicitly performed on the first
update of the unwind information is made explicit with a SYSINIT.
We now don't need the _ia64_unwind_{start|end} symbols.
as a trivial function that only calls ia64_tpa() and hence requires
the prototype of ia64_tpa(), but by defining pmap_kextract as
ia64_tpa. This solves the inclusion ordering issue in ddb/db_watch.c
expand to __attribute__((packed)) and __attribute__((aligned(x)))
respectively. Replace the handful of gcc-ism's that use
__attribute__((aligned(16))) etc around the kernel with __aligned(16).
There are over 400 __attribute__((packed)) to deal with, that can come
later. I just want to use __packed in new code rather than add more
gcc-ism's.
under way to move the remnants of the a.out toolchain to ports. As the
comment in src/Makefile said, this stuff is deprecated and one should not
expect this to remain beyond 4.0-REL. It has already lasted WAY beyond
that.
Notable exceptions:
gcc - I have not touched the a.out generation stuff there.
ldd/ldconfig - still have some code to interface with a.out rtld.
old as/ld/etc - I have not removed these yet, pending their move to ports.
some includes - necessary for ldd/ldconfig for now.
Tested on: i386 (extensively), alpha
in the original hardwired sysctl implementation.
The buf size calculator still overflows an integer on machines with large
KVA (eg: ia64) where the number of pages does not fit into an int. Use
'long' there.
Change Maxmem and physmem and related variables to 'long', mostly for
completeness. Machines are not likely to overflow 'int' pages in the
near term, but then again, 640K ought to be enough for anybody. This
comes for free on 32 bit machines, so why not?