Commit Graph

7 Commits

Author SHA1 Message Date
marius
788539ae31 Add a PCI front-end to esp(4) allowing it to support AMD Am53C974 and
replace amd(4) with the former in the amd64, i386 and pc98 GENERIC kernel
configuration files. Besides duplicating functionality, amd(4), which
previously also supported the AMD Am53C974, unlike esp(4) is no longer
maintained and has accumulated enough bit rot over time to always cause
a panic during boot as long as at least one target is attached to it
(see PR 124667).

PR:		124667
Obtained from:	NetBSD (based on)
MFC after:	3 days
2011-11-01 21:26:57 +00:00
marius
3c64a86d3b Don't build unused SBus front-ends for sun4v, don't build EBus front-ends
which are also likely to be irrelevant for sun4v (there's no SBus on sun4v
and only some EBus devices). While at it fix some style bugs according to
style.Makefile(5) where appropriate.

MFC after:	3 days
2008-05-04 14:59:25 +00:00
marius
9ea9bafe68 - Try to not leak resources in the attach functions of the esp(4) SBus
front-end and the LSI64854 and NCR53C9x code in case one of these
  functions fails. Add detach functions to these parts and make esp(4)
  detachable.
- Revert rev. 1.7 of esp_sbus.c, since rev. 1.34 of sbus.c the clockfreq
  IVAR defaults to the per-child values.
- Merge ncr53c9x.c rev. 1.111 from NetBSD (partial):
  On reset, clear state flags and the msgout queue.
  In NetBSD code to notify the upper layer (i.e. CAM in FreeBSD) on reset
  was also added with this revision. This is believed to be not necessary
  in FreeBSD and was not merged.
  This makes ncr53c9x.c to be in sync with NetBSD up to rev. 1.114.
- Conditionalize the LSI64854 support on sbus(4) only instead of sbus(4)
  and esp(4) as it's also required for the 'dma', 'espdma' and 'ledma'
  busses/devices as well as the 'SUNW,bpp' device (printer port) which
  all hang off of sbus(4).
- Add a driver for the 'dma', 'espdma' and 'ledma' (pseudo-)busses/
  devices. These busses and devices actually represent the LSI64854 DMA
  engines for the ESP SCSI and LANCE Ethernet controllers found on the
  SBus of Ultra 1 and SBus add-on cards. With 'espdma' and 'ledma' the
  'esp' and 'le' devices hang off of the respective DMA bus instead of
  directly from the SBus. The 'dma' devices are either also used in this
  manner or on some add-on cards also as a companion device to an 'esp'
  device which also hangs off directly from the SBus. With the latter
  variant it's a bit tricky to glue the DMA engine to the core logic of
  the respective 'esp' device. With rev. 1.35 of sbus.c we are however
  guaranteed that such a 'dma' device is probed before the respective
  'esp' device which simplifies things a lot. [1]
- In the esp(4) SBus front-end read the part-unique ID code of Fast-SCSI
  capable chips the right way. This fixes erroneously detecting some
  chips as FAS366 when in fact they are not. Add explicit checks for the
  FAS100A, FAS216 and FAS236 variants instead treating all of these as
  ESP200. That way we can correctly set the respective Fast-SCSI config
  bits instead of driving them out of specs. This includes adding the
  FAS100A and FAS236 variants to the NCR53C9x core code. We probably
  still subsume some chip variants as ESP200 while in fact they are
  another variant which however shouldn't really matter as this will
  only happen when these chips are driven at 25MHz or less which implies
  not being able to run Fast-SCSI. [3]
- Add a workaround to the NCR53C9x interrupt handler which ignores the
  stray interrupt generated by FAS100A when doing path inquiry during
  boot and which otherwiese would trigger a panic.
- Add support for the 'esp' devices hanging off of a 'dma' or 'espdma'
  busses or which are companions of 'dma' devices to esp(4). In case of
  the variants that hang off of a DMA device this is a bit hackish as
  esp(4) then directly uses the softc of the respective parent to talk
  to the DMA engine. It might make sense to add an interface for this
  in order to implement this in a cleaner way however it's not yet clear
  how the requirements for the LANCE Ethernet controllers are and the
  hack works for now. [2]
  This effectively adds support for the onboard SCSI controller in
  Ultra 1 as well as most of the ESP-based SBus add-on cards to esp(4).
  With this the code for supporting the Performance Technologies SBS430
  SBus SCSI add-on cards is also largely in place the remaining bits
  were however omitted as it's unclear from the NetBSD how to couple
  the DMA engine and the core logic together for these cards.

Obtained from:	OpenBSD [1]
Obtained from:	NetBSD [2]
Clue from:	BSD/OS [3]
Reviewed by:	scottl (earlier version)
Tested with:	FSBE/S add-on card (FAS236), SSHA add-on card (ESP100A),
		Ultra 1 (onboard FAS100A), Ultra 2 (onboard FAS366)
2005-05-19 14:51:10 +00:00
trhodes
2f6f7628e1 Fix paths after repocopies done by scottl
Reviewed by:	marius
OK'ed by:	scottl
2004-11-10 14:09:52 +00:00
marius
f8c9f3a5e2 - Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
  properties in drivers for devices on Open Firmware supported busses. The
  standard properties "reg", "interrupts" und "address" are not covered by
  this interface because they are only of interest in the respective bridge
  code. There's a remaining standard property "status" which is unclear how
  to support properly but which also isn't used in FreeBSD at present.
  This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
  ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
  vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
  This in turn allows to simplify and remove code-duplication in drivers for
  devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
  drivers for their children to use the ofw_bus kobj-interface. The IVAR-
  interfaces of the Central, EBus and FHC are entirely replaced by this. The
  PCI bus driver used its own kobj-interface and now also uses the ofw_bus
  one. The IVARs special to the SBus, e.g. for retrieving the burst size,
  remain.
  Beware: this causes an ABI-breakage for modules of drivers which used the
  IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
  recompiled.
  The style-inconsistencies introduced in some of the bus drivers will be
  fixed by tmm@ in a generic clean-up of the respective drivers later (he
  requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
  use the ofw_bus kobj-interface. This invloves removing the IVARs related
  to the "reg" property which were unused and a leftover from the NetBSD
  origini of the code. There's no ABI-breakage caused by this because none
  of these driver are currently built as modules.
  There are other powerpc bus drivers which can be converted to the ofw_bus
  kobj-interface, e.g. the PCI bus driver, which should be done together
  with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
  advantage of the ofw_bus kobj-interface and simplify them a bit.

Reviewed by:	grehan, tmm
Approved by:	re (scottl)
Discussed with:	tmm
Tested with:	Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
marius
6d4208084f Fix typo that prevents esp_sbus.c and lsi64854.c from being built on sparc64. 2004-06-10 13:02:29 +00:00
scottl
1154159183 Port the NetBSD esp(4) driver. This only includes the sbus front-end, so
its primary use is for the FEPS/FAS366 SCSI found in Sun Ultra 1e and 2
machines.  Once the pci front-end is ported, this driver can replace the
amd(4) driver.

The code as-is is fairly stable.  I've disabled tagged-queueing until I can
figure out a corruption bug related to it.  I'm importing it now so that
people with these machines can (finally) stop netbooting and report bugs
before 5.3.
2004-06-10 05:11:39 +00:00