Contains:
* Refactor the hardware RNG CPU instruction sources to feed into
the software mixer. This is unfinished. The actual harvesting needs
to be sorted out. Modified by me (see below).
* Remove 'frac' parameter from random_harvest(). This was never
used and adds extra code for no good reason.
* Remove device write entropy harvesting. This provided a weak
attack vector, was not very good at bootstrapping the device. To
follow will be a replacement explicit reseed knob.
* Separate out all the RANDOM_PURE sources into separate harvest
entities. This adds some secuity in the case where more than one
is present.
* Review all the code and fix anything obviously messy or inconsistent.
Address som review concerns while I'm here, like rename the pseudo-rng
to 'dummy'.
Submitted by: Arthur Mesh <arthurmesh@gmail.com> (the first item)
I/O clock. Thankfully, the simple executive provies a way to querry
the proper clock that works on all models. Move to asking for the SCLK
via this interface.
This gets the serial console working after we start init and open the
console and set the divisor (which turned the output from good to
bad). I can login on the console now.
sys/arm and sys/mips), squelching the clang 3.3 warnings about this.
Noticed by: tinderbox and many irate spectators
Submitted by: Luiz Otavio O Souza <loos.br@gmail.com>
PR: kern/177759
MFC after: 3 days
reducing the number of runtime checks done by the SDK code.
o) Group board/CPU information at early startup by subject matter, so that e.g.
CPU information is adjacent to CPU information and board information is
adjacent to board information.
other than UART 0 from the outset.
o) Print board information from sysinfo after consoles have been initialized
rather than doing it during boot descriptor parsing.
o) Use cvmx_safe_printf and platform_reset rather than panic when doing very
early boot descriptor parsing before the console is set up.
o) Get rid of the global octeon_bootinfo.
address passed from the bootloader, rather than using a hard-coded value.
Make FreeBSD announce itself on the LED display similar to other kernels.
Remove uses of the previous LED routines, which were under-used and only used
in drivers for what seem like debugging purposes, despite those drivers being
widely-tested.
Remove several inlines for accessing memory that duplicate other functions
which are now used instead, as they are now entirely unused.
This makes our naming scheme more closely match other systems and the
expectations of much third-party software. MIPS builds which are little-endian
should require and exhibit no changes. Big-endian TARGET_ARCHes must be
changed:
From: To:
mipseb mips
mipsn32eb mipsn32
mips64eb mips64
An entry has been added to UPDATING and some foot-shooting protection (complete
with warnings which should become errors in the near future) to the top-level
base system Makefile.
make use of it where possible.
This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.
Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.
Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive. The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
o) The MAC set must occur before the multicast list is set up as the former
will enable the CAM unconditionally, while promiscuous mode disables it,
so if promiscuous mode is to be set this must occur after the MAC is
programmed.
o) The multicast list must be set up unconditionally as even if flags have
not changed, if the interface has gone through a reinitialization, the
state of the CAM as changed by the MAC initialization could be incorrect.
o) Call octm_init when flags change, even if the interface is already running.
handle address, where we're using handles as raw addresses.
This fixes devices with subregions on Octeon PCI specifically, and likely also on
MIPS more generally, where there isn't another bus_space in use that was doing the
math already.
- Reserver respective number of addresses for managment port
- octm uses base address directly
- other drivers get MACs on "first come first served" basis
Reviewed by: juli
- Centralize address assignment
- Make sure managment ports get first MAC address in pool
- Properly propagate fail if address allocation failed
Submitted by: Andrew Duane <aduane@juniper.net>
of root HUB. Although it is initialized with port index of the
device's parent hub, which is worng. So track the USB tree up to
root HUB and initialize this filed ptroprly
Rename port_index to root_port_index in order to reflect its
real semantics.
comparing to struct timeval. for clocktime they should be
1..7 and 1..12 respectively
- CAPK-0100ND uses RTC without centruy bit (DS1307) so set it 21st