opt_inet6.h into kmod.mk by forcing almost everybody to eat the same
dogfood. While at it, consolidate the opt_bpf.h and opt_mroute.h
targets here too.
provides support for a variety of low-end graphics hardware (SBus adapters,
Mach64, QEMU's framebuffer, XVR-100). A driver for at least the Creator3D
cards will have to be present before this can become the default console
driver.
To test vt(4) on sparc64, set kern.vty=vt at the loader prompt.
so it really should not be under "optional inet". The fact that uipc_accf.c
lives under kern/ lends some weight to making it a "standard" file.
Moving kern/uipc_accf.c from "optional inet" to "standard" eliminates the
need for #ifdef INET in kern/uipc_socket.c.
Also, this meant the net.inet.accf.unloadable sysctl needed to move, as
net.inet does not exist without networking compiled in (as it lives in
netinet/in_proto.c.) The new sysctl has been named net.accf.unloadable.
In order to support existing accept filter sysctls, the net.inet.accf node
has been added netinet/in_proto.c.
Submitted by: Steve Kiernan <stevek@juniper.net>
Obtained from: Juniper Networks, Inc.
completely silenced. Make sure these warnings appear again, so there is
some incentive to fix them, but do not error out the whole kernel build
for them.
Noticed by: steven@pyro.eu.org
PR: 191867
MFC after: 3 days
This allows to clone VMs and move them between LUNs inside one storage
host without generating extra network traffic to the initiator and back,
and without being limited by network bandwidth.
LUNs participating in copy operation should have UNIQUE NAA or EUI IDs set.
For LUNs without these IDs VMWare will use traditional copy operations.
Beware: the above LUN IDs explicitly set to values non-unique from the VM
cluster point of view may cause data corruption if wrong LUN is addressed!
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
This includes:
o All directories named *ia64*
o All files named *ia64*
o All ia64-specific code guarded by __ia64__
o All ia64-specific makefile logic
o Mention of ia64 in comments and documentation
This excludes:
o Everything under contrib/
o Everything under crypto/
o sys/xen/interface
o sys/sys/elf_common.h
Discussed at: BSDcan
console's ability to enter the debugger.... rwatson forgot to document
this when he changed it back in 2011... There is more docs to write
about this, but at least fix this for now...
Reviewed by: emaste
MFC after: 1 week
Both vt(4) and ofwfb(4) need a lot of love to be usable on sparc64 and even
then the performance of ofwfb(4) would suck compared to hardware accelerated
drivers like creator(4) and machfb(4).
into head. The code is not believed to have any effect
on the semantics of non-NFSv4.1 server behaviour.
It is a rather large merge, but I am hoping that there will
not be any regressions for the NFS server.
MFC after: 1 month
implement options TERMINAL_{KERN,NORM}_ATTR. These are aliased to
SC_{KERNEL_CONS,NORM}_ATTR and like these latter, allow to change the
default colors of normal and kernel text respectively.
Note on the naming: Although affecting the output of vt(4), technically
kern/subr_terminal.c is primarily concerned with changing default colors
so it would be inconsistent to term these options VT_{KERN,NORM}_ATTR.
Actually, if the architecture and abstraction of terminal+teken+vt would
be perfect, dev/vt/* wouldn't be touched by this commit at all.
Reviewed by: emaste
MFC after: 3 days
Sponsored by: Bally Wulff Games & Entertainment GmbH
configs. Switch the BERI_NETFPGA_MDROOT to 64bit by default.
Give we have working interrupts also cleanup the extra polling CFLAGS from
the module Makefile.
MFC after: 2 weeks
Introduce a Xen specific nexus that is going to be used by Xen PV/PVH
guests.
Sponsored by: Citrix Systems R&D
Approved by: gibbs
x86/xen/xen_nexus.c:
- Introduce a Nexus to use on Xen PV(H) guests, this prevents PV(H)
guests from using the legacy Nexus.
conf/files.amd64:
conf/files.i386:
- Add the xen nexus to the build.
Since there's no ACPI on PVH guests, we need to create a dummy CPU
device in order to fill the pcpu->pc_device field.
Sponsored by: Citrix Systems R&D
Approved by: gibbs
dev/xen/pvcpu/pvcpu.c:
- Create a dummy CPU device for PVH guests in order to fill the
per-cpu pc_device field.
conf/files:
- Add the pvcpu device to kernels using XEN or XENHVM options.
Create a dummy bus so top level Xen devices can attach to it (instead
of attaching directly to the nexus). This allows to have all the Xen
related devices grouped under a single bus.
Sponsored by: Citrix Systems R&D
Approved by: gibbs
x86/xen/xenpv.c:
- Attach the xenpv bus when running as a Xen guest.
- Attach the ISA bus if needed, in order to attach syscons.
conf/files.amd6:
conf/files.i386:
- Include the xenpv.c file in the build of i386/amd64 kernels using
XENHVM.
dev/xen/console/console.c:
dev/xen/timer/timer.c:
xen/xenstore/xenstore.c:
- Attach to the xenpv bus instead of the Nexus.
dev/xen/xenpci/xenpci.c:
- Xen specific devices on PVHVM guests are no longer attached to the
xenpci device, they are instead attached to the xenpv bus, remove
the now unused methods.
Create the necessary hooks in order to provide a Xen PV APIC
implementation that can be used on PVH. Most of the lapic ops
shouldn't be called on Xen, since we trap those operations at a higher
layer.
Sponsored by: Citrix Systems R&D
Approved by: gibbs
x86/xen/hvm.c:
x86/xen/xen_apic.c:
- Move IPI related code to xen_apic.c
x86/xen/xen_apic.c:
- Introduce Xen PV APIC implementation, most of the functions of the
lapic interface should never be called when running as PV(H) guest,
so make sure FreeBSD panics when trying to use one of those.
- Define the Xen APIC implementation in xen_apic_ops.
xen/xen_pv.h:
- Extern declaration of the xen_apic struct.
x86/xen/pv.c:
- Use xen_apic_ops as apic_ops when running as PVH guest.
conf/files.amd64:
conf/files.i386:
- Include the xen_apic.c file in the build of i386/amd64 kernels
using XENHVM.
using a direct hook called from kern_vfs_bio_buffer_alloc().
Mark ffs_rawread.c as requiring both ffs and directio options to be
compiled into the kernel. Add ffs_rawread.c to the list of ufs.ko
module' sources.
In addition to stopping breaking the layering violation, it also
allows to link kernel when FFS is configured as module and DIRECTIO is
enabled.
One consequence of the change is that ffs_rawread.o is always linked
into the module regardless of the DIRECTIO option. This is similar to
the option QUOTA and ufs_quota.c.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
- Update FDT file for BERI DE4 boards.
- Add needed kernel configuration keywords.
- Rename module to saf1761otg so that the device unit number does not
interfere with the hardware ID in dmesg.
Sponsored by: DARPA, AFRL
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.
For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.
With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.
trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43🆎cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43🆎cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...
Relnotes: Yes
Sponsored by: Chelsio Communications.
The CUSE library is a wrapper for the devfs kernel functionality which
is exposed through /dev/cuse . In order to function the CUSE kernel
code must either be enabled in the kernel configuration file or loaded
separately as a module. Currently none of the committed items are
connected to the default builds, except for installing the needed
header files. The CUSE code will be connected to the default world and
kernel builds in a follow-up commit.
The CUSE module was written by Hans Petter Selasky, somewhat inspired
by similar functionality found in FUSE. The CUSE library can be used
for many purposes. Currently CUSE is used when running Linux kernel
drivers in user-space, which need to create a character device node to
communicate with its applications. CUSE has full support for almost
all devfs functionality found in the kernel:
- kevents
- read
- write
- ioctl
- poll
- open
- close
- mmap
- private per file handle data
Requested by several people. Also see "multimedia/cuse4bsd-kmod" in
ports.
ismt(4) supports the SMBus Message Transport controller found on Intel
C2000 series (Avoton) and S1200 series (Briarwood) Atom SoCs.
Sponsored by: Intel
Intel 40G Ethernet Controller XL710 Family. This is
the core driver, a VF driver called i40evf, will be
following soon. Questions or comments to myself or
my co-developer Eric Joyner. Cheers!
src/sys and the rest of the tree for builds.
o eliminate including bsd.mkopts.mk for the moment in kern.opts.mk
o No need to include src.opts.mk at all anymore. The reasons for it
are now coverted in sys.mk and src.sys.mk.
platform code, it is expected these will be merged in the future when the
ARM code is more complete.
Until more boards can be tested only use this with the Raspberry Pi and
rrename the functions on the other SoCs.
Reviewed by: ian@
does an out-of-tree build without setting MAKESYSPATH) and recently
added requirements (JIRA's building the modules in a non-standard
layout). So, when MAKESYSPATH is defined, trust that it will do the
right thing (to catch the JIRA use case). When it isn't defined,
assume a standard FreeBSD tree and reach over to grab bsd.mkopt.mk (to
fix the /usr/ports use case). Both camps cannot be appeased otherwise,
so we have this kludge until it can be sorted out.
GENERIC64 for PowerPC to use vt with it.
Much to my chagrin, PS3 support seems to have bitrotted somewhat since the
last time I tried it. ehci panics on attach and interrupt handling seems
to be faulty. This should be fixed soon...
o KMODDEPS warning is 15 years stale. Remove it.
o MK_CTF will always be defined now, so no need to test to see if it
is defined.
o no need to define MK_FORMAT_EXTENTIONS if undefined anymore.
This driver supports the low and high precision models (9 and 11 bits) and
it will auto-detect the both variants.
The driver expose the temperature registers (actual temperature, shutdown
and hysteresys temperature) and also the configuration register.
It was tested on FDT systems: RPi, BBB and on non-FDT systems: AR71xx, with
both, hardware i2c controllers (when available) and gpioiic(4).
This provides a simple and cheap way for verifying the i2c bus on embedded
systems.