NGM_BINARY2ASCII, which convert control messages to ASCII and back.
This allows control messages to be sent and received in ASCII form
using ngctl(8), which makes ngctl a lot more useful.
This also allows all the type-specific debugging code in libnetgraph
to go away -- instead, we just ask the node itself to do the ASCII
translation for us.
Currently, all generic control messages are supported, as well as
messages associated with the following node types: async, cisco,
ksocket, and ppp.
See /usr/share/examples/netgraph/ngctl for an example of using this.
Also give ngctl(8) the ability to print out incoming data and
control messages at any time. Eventually nghook(8) may be subsumed.
Several other misc. bug fixes.
Reviewed by: julian
rather than an "it's mine!" so that other newbus-aware drivers can
bid for the device too. This should allow the sym driver to out-bid
the ncr driver for devices it supports without having to modify ncr.c
at all. ncr would then function as a catch-all.
Support for TDK LAC-CF010 by Ichiro Fukuhara
(ichiro@ichiro.org) on kern/8900 ichiro test TDK CF Card on
Opensource matsuri,tokyo and send patch to us. thanx.
In combination with Doug's recent alpha_cpu.h, this reduces the cost
of ipl raising/lowering significantly. This is most pronounced when
doing file reads.
Reviewed by: dfr
specific instructions such as rpcc and mb. This should provide some
performance improvements and will allow me to delete the file pal.s.
To allow people time to update their loadable modules, I will leave pal.s
alone for now.
On UDMA CRC errors retry operation as it might be a fluke, if not fall
back to PIO mode on the failing drive. If you get alot of these your
cabeling is most likely not good enough.
On HARD error using DMA, retry once using PIO, if it succeds using PIO
fall back to PIO mode on the failing drive.
Make sure we read a likely value from the PIIX timecounter.
This should fix a large fraction of the "calcru: negative time"
warnings produced by SMP machines.
Another hole in one by: bde
Didn't belive Bruce: phk
pcic_attach_sockets. Rework bus width probe mapping and unmapping to
use the newbus bus_{allocate,release}_resource with a rid of 1 to work
on FreeBSD. Remove a few now unneeded #includes.
it would work), or a specialized one. Most of these have been
creatively stolen from pccard_nkb, which in turn stole from isa
showing that generic bus_ versions of bus_{set,get,delete}_resource
might be profitable.
Fix a couple of minor bugs introduced in the last round of updates
from NetBSD.
Start on the pccard_ivar structure which will hold the resources and
slot number.
Add tcic as a possible attachment for pccard and rename the attachment
for pcicx to pcic since the name has changed since I originally wrote
this stuff.
Next up:
stringing together the various memory and I/O
allocation/mapping primitives in i82365.c, final touches on the isa
attach routine and other fun stuff in that line of attach.
what it is.
Be more correct in unbusying the mountpoint (especially before freeing it).
Remove support for mounting 'r' devices as root. You don't mount 'r'
devices anywhere else, and they're going away anyway.
Submitted by: bde
socket attach code. We now have at least a chance for pccard devices
appearing in the future.
This is a snapshot of ongoing work. Proceed at your own risk.
- more req[uest]->xfer changes.
- get the corresponding NetBSD Id's right
ohci.c
- move untimeout above print statement
- remove usb_delay that panics the system (tsleep in intr context) when
ohcidebug > 5.
ugen.c
- create the devices for endpoints with make_dev.
uhub.c
- change from using usbdebug to uhubdebug
- add more debugging statements
files (opt_*.h) automatically (if they are in ${SRCS}).
Clean vnode_if.[ch] automatically (if one of them is in ${SRCS}, not just
if VFS_KLD is defined).
There are some complications to avoid using the "@" symlink before it
is built.
(kern.randompid), which is currently defaulted off. Use ARC4 (RC4) for our
random number generation, which will not get me executed for violating
crypto laws; a Good Thing(tm).
Reviewed and Approved by: bde, imp
commit to kern_synch.c:
----------------------------
revision 1.55
date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10
Scheduler bug fixes and reorganization
* fix the ancient nice(1) bug, where nice +20 processes incorrectly
steal 10 - 20% of the CPU, (or even more depending on load average)
* provide a new schedclk() mechanism at a new clock at schedhz, so high
platform hz values don't cause nice +0 processes to look like they are
niced
* change the algorithm slightly, and reorganize the code a lot
* fix percent-CPU calculation bugs, and eliminate some no-op code
=== nice bug === Correctly divide the scheduler queues between niced and
compute-bound processes. The current nice weight of two (sort of, see
`algorithm change' below) neatly divides the USRPRI queues in half; this
should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides
being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op,
and it was done after decay_cpu() which can only _reduce_ the value. It
has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can
scheduler-penalize themselves onto the same queue as nice +20 processes.
(Or even a higher one.)
=== New schedclk() mechansism === Some platforms should be cutting down
stathz before hitting the scheduler, since the scheduler algorithm only
works right in the vicinity of 64 Hz. Rather than prescale hz, then scale
back and forth by 4 every time p_estcpu is touched (each occurance an
abstraction violation), use p_estcpu without scaling and require schedhz
to be generated directly at the right frequency. Use a default stathz (well,
actually, profhz) / 4, so nothing changes unless a platform defines schedhz
and a new clock. Define these for alpha, where hz==1024, and nice was
totally broke.
=== Algorithm change === The nice value used to be added to the
exponentially-decayed scheduler history value p_estcpu, in _addition_ to
be incorporated directly (with greater wieght) into the priority calculation.
At first glance, it appears to be a pointless increase of 1/8 the nice
effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that
because it will ramp up linearly but be decayed only exponentially, thus
converging to an additional .75 nice for a loadaverage of one. I killed
this, it makes the behavior hard to control, almost impossible to analyze,
and the effect (~~nothing at for the first second, then somewhat increased
niceness after three seconds or more, depending on load average) pointless.
=== Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation.
Collect scheduler functionality. Try to put each abstraction in just one
place.
----------------------------
The details are a little different in FreeBSD:
=== nice bug === Fixing this is the main point of this commit. We use
essentially the same clipping rule as NetBSD (our limit on p_estcpu
differs by a scale factor). However, clipping at all is fundamentally
bad. It gives free CPU the hoggiest hogs once they reach the limit, and
reaching the limit is normal for long-running hogs. This will be fixed
later.
=== New schedclk() mechanism === We don't use the NetBSD schedclk()
(now schedclock()) mechanism. We require (real)stathz to be about 128
and scale by an extra factor of 2 compared with NetBSD's statclock().
We scale p_estcpu instead of scaling the clock. This is more accurate
and flexible.
=== Algorithm change === Same change.
=== Other bugs === The p_pctcpu bug was fixed long ago. We don't try as
hard to abstract functionality yet.
Related changes: the new limit on p_estcpu must be exported to kern_exit.c
for clipping in wait1().
Agreed with by: dufault
commit to kern_synch.c:
----------------------------
revision 1.55
date: 1999/02/23 02:56:03; author: ross; state: Exp; lines: +39 -10
Scheduler bug fixes and reorganization
* fix the ancient nice(1) bug, where nice +20 processes incorrectly
steal 10 - 20% of the CPU, (or even more depending on load average)
* provide a new schedclk() mechanism at a new clock at schedhz, so high
platform hz values don't cause nice +0 processes to look like they are
niced
* change the algorithm slightly, and reorganize the code a lot
* fix percent-CPU calculation bugs, and eliminate some no-op code
=== nice bug === Correctly divide the scheduler queues between niced and
compute-bound processes. The current nice weight of two (sort of, see
`algorithm change' below) neatly divides the USRPRI queues in half; this
should have been used to clip p_estcpu, instead of UCHAR_MAX. Besides
being the wrong amount, clipping an unsigned char to UCHAR_MAX is a no-op,
and it was done after decay_cpu() which can only _reduce_ the value. It
has to be kept <= NICE_WEIGHT * PRIO_MAX - PPQ or processes can
scheduler-penalize themselves onto the same queue as nice +20 processes.
(Or even a higher one.)
=== New schedclk() mechansism === Some platforms should be cutting down
stathz before hitting the scheduler, since the scheduler algorithm only
works right in the vicinity of 64 Hz. Rather than prescale hz, then scale
back and forth by 4 every time p_estcpu is touched (each occurance an
abstraction violation), use p_estcpu without scaling and require schedhz
to be generated directly at the right frequency. Use a default stathz (well,
actually, profhz) / 4, so nothing changes unless a platform defines schedhz
and a new clock. Define these for alpha, where hz==1024, and nice was
totally broke.
=== Algorithm change === The nice value used to be added to the
exponentially-decayed scheduler history value p_estcpu, in _addition_ to
be incorporated directly (with greater wieght) into the priority calculation.
At first glance, it appears to be a pointless increase of 1/8 the nice
effect (pri = p_estcpu/4 + nice*2), but it's actually at least 3x that
because it will ramp up linearly but be decayed only exponentially, thus
converging to an additional .75 nice for a loadaverage of one. I killed
this, it makes the behavior hard to control, almost impossible to analyze,
and the effect (~~nothing at for the first second, then somewhat increased
niceness after three seconds or more, depending on load average) pointless.
=== Other bugs === hz -> profhz in the p_pctcpu = f(p_cpticks) calcuation.
Collect scheduler functionality. Try to put each abstraction in just one
place.
----------------------------
The details are a little different in FreeBSD:
=== nice bug === Fixing this is the main point of this commit. We use
essentially the same clipping rule as NetBSD (our limit on p_estcpu
differs by a scale factor). However, clipping at all is fundamentally
bad. It gives free CPU the hoggiest hogs once they reach the limit, and
reaching the limit is normal for long-running hogs. This will be fixed
later.
=== New schedclk() mechanism === We don't use the NetBSD schedclk()
(now schedclock()) mechanism. We require (real)stathz to be about 128
and scale by an extra factor of 2 compared with NetBSD's statclock().
We scale p_estcpu instead of scaling the clock. This is more accurate
and flexible.
=== Algorithm change === Same change.
=== Other bugs === The p_pctcpu bug was fixed long ago. We don't try as
hard to abstract functionality yet.
Related changes: the new limit on p_estcpu must be exported to kern_exit.c
for clipping in wait1().
Agreed with by: dufault
X server, is not responding to the VT switching protocol. (This part
of the code has been somewhat wrong in -CURRENT, but -STABLE has the
correct code...)