MAC address in the EEPROM, and we need to get it from OpenFirmware.
This isn't very pretty but time is lacking to do this in a better
way this near 5.2-RELEASE. This is a RELENG_5_2 candidate.
Original version by: Marius Strobl <marius@alchemy.franken.de>
Tested by: Pete Bentley <pete@sorted.org>
Reviewed by: jake
is useless for threaded programs, multiple threads can not share same
stack.
The alternative signal stack is private for thread, no lock is needed,
the orignal P_ALTSTACK is now moved into td_pflags and renamed to
TDP_ALTSTACK.
For single thread or Linux clone() based threaded program, there is no
semantic changed, because those programs only have one kernel thread
in every process.
Reviewed by: deischen, dfr
1) mp_maxid is a valid FreeBSD CPU ID in the range 0 .. MAXCPU - 1.
2) For all active CPUs in the system, PCPU_GET(cpuid) <= mp_maxid.
Approved by: re (scottl)
Tested on: i386, amd64, alpha
very early (SI_SUB_TUNABLES - 1) and is responsible for setting mp_maxid.
cpu_mp_probe() is now called at SI_SUB_CPU and determines if SMP is
actually present and sets mp_ncpus and all_cpus. Splitting these up
allows an architecture to probe CPUs later than SI_SUB_TUNABLES by just
setting mp_maxid to MAXCPU in cpu_mp_setmaxid(). This could allow the
CPU probing code to live in a module, for example, since modules
sysinit's in modules cannot be invoked prior to SI_SUB_KLD. This is
needed to re-enable the ACPI module on i386.
- For the alpha SMP probing code, use LOCATE_PCS() instead of duplicating
its contents in a few places. Also, add a smp_cpu_enabled() function
to avoid duplicating some code. There is room for further code
reduction later since much of this code is also present in cpu_mp_start().
- All archs besides i386 still set mp_maxid to the same values they set it
to before this change. i386 now sets mp_maxid to MAXCPU.
Tested on: alpha, amd64, i386, ia64, sparc64
Approved by: re (scottl)
physical mapping.
- Move the sf_buf API to its own header file; make struct sf_buf's
definition machine dependent. In this commit, we remove an
unnecessary field from struct sf_buf on the alpha, amd64, and ia64.
Ultimately, we may eliminate struct sf_buf on those architecures
except as an opaque pointer that references a vm page.
cache after a data access error we must discard all cache lines. When
disabled existing cache lines are not invalidated by stores to memory, so
we risk reading stale data that was cached before the data access error if
we don't flush them. This is especially fatal when the memory involved
is the active part of the kernel or user stack. For good measure we also
flush the instruction cache.
This fixes random crashes when the X server probes the PCI bus through
/dev/pci.
Since all callers either passed 0 or 1 for clear_ret, define bit 0 in
the flags for use as clear_ret. Reserve bits 1, 2 and 3 for use by MI
code for possible (but unlikely) future use. The remaining bits are for
use by MD code.
This change is triggered by a need on ia64 to have another knob for
get_mcontext().
A small helper function pmap_is_prefaultable() is added. This function
encapsulate the few lines of pmap_prefault() that actually vary from
machine to machine. Note: pmap_is_prefaultable() and pmap_mincore() have
much in common. Going forward, it's worth considering their merger.
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
atomically extracts and holds the physical page that is associated with the
given pmap and virtual address. Such a function is needed to make the
memory mapping optimizations used by, for example, pipes and raw disk I/O
MP-safe.
Reviewed by: tegge
address of the device identified by its phandle_t by traversing OFW's
device tree. The space and address returned by this function can
subsequently be passed to sparc64_fake_bustag() to construct a valid
tag and handle for use by the newbus I/O functions.
Use of this function is expected to be limited to pre-newbus access to
devices, such as consoles and keyboards.
Partially obtained from: tmm
Reviewed by: jake, jmg, tmm
SBus testing made possible by: jake
Tested with: LINT
sockets into machine-dependent files. The rationale for this
migration is illustrated by the modified amd64 allocator. It uses the
amd64's direct map to avoid emphemeral mappings in the kernel's
address space. On an SMP, the emphemeral mappings result in an IPI
for TLB shootdown for each transmitted page. Yuck.
Maintainers of other 64-bit platforms with direct maps should be able
to use the amd64 allocator as a reference implementation.
bus tag is to allow bus space accesses prior to having newbus
fully initialized, such as would be the case for console drivers.
Since barriers are a fundamental part of bus space accesses, not
allowing them on fake tags would defeat the purpose of these tags.
We use the barrier function normally associated with nexus. This
is the barrier used when subordinates haven't defined a barrier
themselves.
set in cpu_critical_fork_exit() anymore.
- As far as I can tell, cpu_thread_link() has never been used, not even
when it was originally added, so remove it.
tsb_foreach(), 0 signals to terminate the tsb traversal, so when
tsb_foreach() was used in pmap_protect() (which only happens when
the area to be protected is larger than PMAP_TSB_THRESH = 16MB), only
the first tsb entry in the specified range would be protected.
Reported by: Andrew Belashov <bel@orel.ru>
memory in bus_dmamem_alloc(). This is possible now that
contigmalloc() supports the M_ZERO flag.
- Remove the locking of Giant around calls to contigmalloc() since
contigmalloc() now grabs Giant itself.
code from i386. The code has a slight bogon that interrupts are counted
twice. Once on the ithread dispatch and once on the dispatch for the vector
vmstat -i and systat -vm now contains interrupt counts.
Reviewed by: jake
without Giant held.
A quick outline of the locking strategy:
Since all IOMMUs are synchronized, there is a single lock, iommu_mtx,
which protects the hardware registers (where needed) and the global and
per-IOMMU software states. As soon as the IOMMUs are divorced, each struct
iommu_state will have its own mutex (and the remaining global state
will be moved into the struct).
The dvma rman has its own internal mutex; the TSB slots may only be
accessed by the owner of the corresponding resource, so neither needs
extra protection.
Since there is a second access path to maps via LRU queues, the consumer-
provided locking is not sufficient; therefore, each map which is on a
queue is additionally protected by iommu_mtx (in part, there is one
member which only the map owner may access). Each map on a queue may
be accessed and removed from or repositioned in a queue in any context as
long as the lock is held; only the owner may insert a map.
To reduce lock contention, some bus_dma functions remove the map from
the queue temporarily (on behalf of the map owner) for some operations and
reinsert it when they are done. Shorter operations and operations which are
not done on behalf of the lock owner are completely covered by the lock.
To facilitate the locking, reorganize the streaming buffer handling;
while being there, fix an old oversight which would cause the streaming
buffer to always be flushed, regardless of whether streaming was enabled
in the TSB entry. The streaming buffer is still disabled for now, since
there are a number of drivers which lack critical bus_dmamp_sync() calls.
Additional testing by: jake