6 Commits

Author SHA1 Message Date
Marko Zec
8b615593fc Step 1.5 of importing the network stack virtualization infrastructure
from the vimage project, as per plan established at devsummit 08/08:
http://wiki.freebsd.org/Image/Notes200808DevSummit

Introduce INIT_VNET_*() initializer macros, VNET_FOREACH() iterator
macros, and CURVNET_SET() context setting macros, all currently
resolving to NOPs.

Prepare for virtualization of selected SYSCTL objects by introducing a
family of SYSCTL_V_*() macros, currently resolving to their global
counterparts, i.e. SYSCTL_V_INT() == SYSCTL_INT().

Move selected #defines from sys/sys/vimage.h to newly introduced header
files specific to virtualized subsystems (sys/net/vnet.h,
sys/netinet/vinet.h etc.).

All the changes are verified to have zero functional impact at this
point in time by doing MD5 comparision between pre- and post-change
object files(*).

(*) netipsec/keysock.c did not validate depending on compile time options.

Implemented by:	julian, bz, brooks, zec
Reviewed by:	julian, bz, brooks, kris, rwatson, ...
Approved by:	julian (mentor)
Obtained from:	//depot/projects/vimage-commit2/...
X-MFC after:	never
Sponsored by:	NLnet Foundation, The FreeBSD Foundation
2008-10-02 15:37:58 +00:00
Bjoern A. Zeeb
603724d3ab Commit step 1 of the vimage project, (network stack)
virtualization work done by Marko Zec (zec@).

This is the first in a series of commits over the course
of the next few weeks.

Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.

We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.

Obtained from:	//depot/projects/vimage-commit2/...
Reviewed by:	brooks, des, ed, mav, julian,
		jamie, kris, rwatson, zec, ...
		(various people I forgot, different versions)
		md5 (with a bit of help)
Sponsored by:	NLnet Foundation, The FreeBSD Foundation
X-MFC after:	never
V_Commit_Message_Reviewed_By:	more people than the patch
2008-08-17 23:27:27 +00:00
Robert Watson
4f7d1876d5 Introduce a new lock, hostname_mtx, and use it to synchronize access
to global hostname and domainname variables.  Where necessary, copy
to or from a stack-local buffer before performing copyin() or
copyout().  A few uses, such as in cd9660 and daemon_saver, remain
under-synchronized and will require further updates.

Correct a bug in which a failed copyin() of domainname would leave
domainname potentially corrupted.

MFC after:	3 weeks
2008-07-05 13:10:10 +00:00
Doug Rabson
c675522fc4 Re-implement the client side of rpc.lockd in the kernel. This implementation
provides the correct semantics for flock(2) style locks which are used by the
lockf(1) command line tool and the pidfile(3) library. It also implements
recovery from server restarts and ensures that dirty cache blocks are written
to the server before obtaining locks (allowing multiple clients to use file
locking to safely share data).

Sponsored by:	Isilon Systems
PR:		94256
MFC after:	2 weeks
2008-06-26 10:21:54 +00:00
Doug Rabson
ee31b83a3a Minor changes to improve compatibility with older FreeBSD releases. 2008-03-28 09:50:32 +00:00
Doug Rabson
dfdcada31e Add the new kernel-mode NFS Lock Manager. To use it instead of the
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.

Highlights include:

* Thread-safe kernel RPC client - many threads can use the same RPC
  client handle safely with replies being de-multiplexed at the socket
  upcall (typically driven directly by the NIC interrupt) and handed
  off to whichever thread matches the reply. For UDP sockets, many RPC
  clients can share the same socket. This allows the use of a single
  privileged UDP port number to talk to an arbitrary number of remote
  hosts.

* Single-threaded kernel RPC server. Adding support for multi-threaded
  server would be relatively straightforward and would follow
  approximately the Solaris KPI. A single thread should be sufficient
  for the NLM since it should rarely block in normal operation.

* Kernel mode NLM server supporting cancel requests and granted
  callbacks. I've tested the NLM server reasonably extensively - it
  passes both my own tests and the NFS Connectathon locking tests
  running on Solaris, Mac OS X and Ubuntu Linux.

* Userland NLM client supported. While the NLM server doesn't have
  support for the local NFS client's locking needs, it does have to
  field async replies and granted callbacks from remote NLMs that the
  local client has contacted. We relay these replies to the userland
  rpc.lockd over a local domain RPC socket.

* Robust deadlock detection for the local lock manager. In particular
  it will detect deadlocks caused by a lock request that covers more
  than one blocking request. As required by the NLM protocol, all
  deadlock detection happens synchronously - a user is guaranteed that
  if a lock request isn't rejected immediately, the lock will
  eventually be granted. The old system allowed for a 'deferred
  deadlock' condition where a blocked lock request could wake up and
  find that some other deadlock-causing lock owner had beaten them to
  the lock.

* Since both local and remote locks are managed by the same kernel
  locking code, local and remote processes can safely use file locks
  for mutual exclusion. Local processes have no fairness advantage
  compared to remote processes when contending to lock a region that
  has just been unlocked - the local lock manager enforces a strict
  first-come first-served model for both local and remote lockers.

Sponsored by:	Isilon Systems
PR:		95247 107555 115524 116679
MFC after:	2 weeks
2008-03-26 15:23:12 +00:00