Improve over the solution in r297527:
Instead of attempting to initialize all the possible cases, just
move the check nearer to the case where it makes sense.
CID: 1006486
Reviewed by: ken
MFC after: 2 weeks
If there is an error different from ERESTART, there is some
chance that we may end up accessing an uninitialized value. This
doesn't seem likely/possible but initialize announce_buf[0],
just in case.
CID: 1006486
chdone(). Previously, the retry could clear the CAM_DEV_QFRZN bit in the
CCB status, leaving the queue frozen.
Submitted by: Jeff Miller <Jeff.Miller@isilon.com>
Reviewed by: ken
MFC after: 2 weeks
Sponsored by: EMC / Isilon Storage Division
Previously such LUNs were silently ignored. But while they indeed unable
to process most of SCSI commands, some, like RTPG, they still can.
MFC after: 1 month
reduce lock congestion and improve SMP scalability of the SCSI/ATA stack,
preparing the ground for the coming next GEOM direct dispatch support.
Replace big per-SIM locks with bunch of smaller ones:
- per-LUN locks to protect device and peripheral drivers state;
- per-target locks to protect list of LUNs on target;
- per-bus locks to protect reference counting;
- per-send queue locks to protect queue of CCBs to be sent;
- per-done queue locks to protect queue of completed CCBs;
- remaining per-SIM locks now protect only HBA driver internals.
While holding LUN lock it is allowed (while not recommended for performance
reasons) to take SIM lock. The opposite acquisition order is forbidden.
All the other locks are leaf locks, that can be taken anywhere, but should
not be cascaded. Many functions, such as: xpt_action(), xpt_done(),
xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM
lock to be held.
To keep compatibility and solve cases where SIM lock can't be dropped, all
xpt_async() calls in addition to xpt_done() calls are queued to completion
threads for async processing in clean environment without SIM lock held.
Instead of single CAM SWI thread, used for commands completion processing
before, use multiple (depending on number of CPUs) threads. Load balanced
between them using "hash" of the device B:T:L address.
HBA drivers that can drop SIM lock during completion processing and have
sufficient number of completion threads to efficiently scale to multiple
CPUs can use new function xpt_done_direct() to avoid extra context switch.
Make ahci(4) driver to use this mechanism depending on hardware setup.
Sponsored by: iXsystems, Inc.
MFC after: 2 months
to 15 minutes, and 5 minutes for things like READ ELEMENT STATUS.
This is needed to account for the worst case scenarios on at least
some Spectra Logic tape libraries.
Sponsored by: Spectra Logic
MFC after: 3 days
changers that don't support the DVCID and CURDATA bits that were
introduced in the SMC spec.
These changers will return an Illegal Request type error if the
bits are set. This causes "chio status" to fail.
The fix is two-fold. First, for changers that claim to be SCSI-2
or older, don't set the DVCID and CURDATA bits for READ ELEMENT
STATUS. For newer changers (SCSI-3 and newer), we default to
setting the new bits, but back off and try the READ ELEMENT STATUS
without the bits if we get an Illegal Request type error.
This has been tested on a Qualstar TLS-8211, which is a SCSI-2
changer that does not support the new bits, and a Spectra T-380,
which is a SCSI-3 changer that does support the new bits. In the
absence of a SCSI-3 changer that does not support the bits, I
tested that with some error injection code. (The SMC spec says
that support for CURDATA is mandatory, and DVCID is optional.)
scsi_ch.c: Add a new quirk, CH_Q_NO_DVCID that gets set for
SCSI-2 and older libraries, or newer libraries that
report errors when the DVCID/CURDATA bits are set.
In chgetelemstatus(), use the new quirk to
determine whether or not to set DVCID and CURDATA.
If we get an error with the bits set, back off and
try without the bits. Set the quirk flag if the
read element status succeeds without the bits set.
Increase the READ ELEMENT STATUS timeout to 60
seconds after testing with a Spectra T-380. The
previous value was 10 seconds, and too short for
the T-380. This may be decreased later after
some additional testing and investigation.
Tested by: Andre Albsmeier <Andre.Albsmeier@siemens.com>
Sponsored by: Spectra Logic
MFC after: 3 days
This allows mapping a tape drive in a changer (as reported by
'chio status') to a sa(4) driver instance by comparing the
serial numbers.
The designators can be ASCII (which is printed out directly), binary
(which is printed in hex format) or UTF-8, which is printed in either
native UTF-8 format if the terminal can support it, or in %XX notation
for non-ASCII characters. Thanks to Hiroki Sato <hrs@> for the
explaining UTF-8 printing and example UTF-8 printing code.
chio.h: Modify the changer_element_status structure to add new
fields and definitions from the SMC3r16 spec.
Rename the original CHIOGSTATUS ioctl to OCHIOGTATUS and
define a new CHIOGSTATUS ioctl.
Clean up some tab/space issues.
chio.c: For the 'status' subcommand, print the designator field
if it is supplied by a device.
scsi_ch.h: Add new flags for DVCID and CURDATA to the READ
ELEMENT STATUS command structure.
Add a read_element_status_device_id structure
for the data fields in the new standard. Add new
unions, dt_or_obsolete and voltage_devid, to hold
and address data from either SCSI-2 or newer devices.
scsi_ch.c: Implement support for fetching device IDs with READ
ELEMENT STATUS data.
Add new arguments to scsi_read_element_status() to
allow the user to request the DVCID and CURDATA bits.
This isn't compiled into libcam (it's only an internal
kernel interface), so we don't need any special
handling for the API change.
If the user issues the new CHIOGSTATUS ioctl, copy all of
the available element status data out. If he issues the
OCHIOGSTATUS ioctl, we don't copy the new fields in the
structure.
Fix a bug in chopen() that would result in the peripheral
never getting unheld if chgetparams() failed.
Sponsored by: Spectra Logic
Submitted by: Po-Li Soong
MFC After: 1 week
drivers.
The bug occurrs when a userland process has the driver instance
open and the underlying device goes away. We get the devfs
callback that the device node has been destroyed, but not all of
the closes necessary to fully decrement the reference count on the
CAM peripheral.
The reason is that once devfs calls back and says the device has
been destroyed, it is moved off to deadfs, and devfs guarantees
that there will be no more open or close calls. So the solution
is to keep track of how many outstanding open calls there are on
the device, and just release that many references when we get the
callback from devfs.
scsi_pass.c,
scsi_enc.c,
scsi_enc_internal.h: Add an open count to the softc in these
drivers. Increment it on open and
decrement it on close.
When we get a devfs callback to say that
the device node has gone away, decrement
the peripheral reference count by the
number of still outstanding opens.
Make sure we don't access the peripheral
with cam_periph_unlock() after what might
be the final call to
cam_periph_release_locked(). The
peripheral might have been freed, and we
will be dereferencing freed memory.
scsi_ch.c,
scsi_sg.c: For the ch(4) and sg(4) drivers, add the
same changes described above, and in
addition, fix another bug that was
previously fixed in the pass(4) and enc(4)
drivers.
These drivers were calling destroy_dev()
from their cleanup routine, but that could
cause a deadlock because the cleanup
routine could be indirectly called from
the driver's close routine. This would
cause a deadlock, because the device node
is being held open by the active close
call, and can't be destroyed.
Sponsored by: Spectra Logic Corporation
MFC after: 1 week
are handled in most CAM peripheral drivers that are not handled by
GEOM's disk class.
The usual character driver open and close semantics are that the
driver gets N open calls, but only one close, when the last caller
closes the device.
CAM peripheral drivers expect that behavior to be honored to the
letter, and the CAM peripheral driver code (specifically
cam_periph_release_locked_busses()) panics if it is done incorrectly.
Since devfs has to drop its locks while it calls a driver's close
routine, and it does not have a way to delay or prevent open calls
while it is calling the close routine, there is a race.
The sequence of events, simplified a bit, is:
- devfs acquires a lock
- devfs checks the reference count, and if it is 1, continues to close.
- devfs releases the lock
- 2nd process open call on the device happens here
- devfs calls the driver's close routine
- devfs acquires a lock
- devfs decrements the reference count
- devfs releases the lock
- 2nd process close call on the device happens here
At the second close, we get a panic in
cam_periph_release_locked_busses(), complaining that peripheral
has been released when the reference count is already 0. This is
because we have gotten two closes in a row, which should not
happen.
The fix is to add the D_TRACKCLOSE flag to the driver's cdevsw, so
that we get a close() call for each open(). That does happen
reliably, so we can make sure that our reference counts are
correct.
Note that the sa(4) and pt(4) drivers only allow one context
through the open routine. So these drivers aren't exposed to the
same race condition.
scsi_ch.c,
scsi_enc.c,
scsi_enc_internal.h,
scsi_pass.c,
scsi_sg.c:
For these drivers, change the open() routine to
increment the reference count for every open, and
just decrement the reference count in the close.
Call cam_periph_release_locked() in some scenarios
to avoid additional lock and unlock calls.
scsi_pt.c: Call cam_periph_release_locked() in some scenarios
to avoid additional lock and unlock calls.
MFC after: 3 days
- Unify bus reset/probe sequence. Whenever bus attached at boot or later,
CAM will automatically reset and scan it. It allows to remove duplicate
code from many drivers.
- Any bus, attached before CAM completed it's boot-time initialization,
will equally join to the process, delaying boot if needed.
- New kern.cam.boot_delay loader tunable should help controllers that
are still unable to register their buses in time (such as slow USB/
PCCard/ CardBus devices), by adding one more event to wait on boot.
- To allow synchronization between different CAM levels, concept of
requests priorities was extended. Priorities now split between several
"run levels". Device can be freezed at specified level, allowing higher
priority requests to pass. For example, no payload requests allowed,
until PMP driver enable port. ATA XPT negotiate transfer parameters,
periph driver configure caching and so on.
- Frozen requests are no more counted by request allocation scheduler.
It fixes deadlocks, when frozen low priority payload requests occupying
slots, required by higher levels to manage theit execution.
- Two last changes were holding proper ATA reinitialization and error
recovery implementation. Now it is done: SATA controllers and Port
Multipliers now implement automatic hot-plug and should correctly
recover from timeouts and bus resets.
- Improve SCSI error recovery for devices on buses without automatic sense
reporting, such as ATAPI or USB. For example, it allows CAM to wait, while
CD drive loads disk, instead of immediately return error status.
- Decapitalize diagnostic messages and make them more readable and sensible.
- Teach PMP driver to limit maximum speed on fan-out ports.
- Make boot wait for PMP scan completes, and make rescan more reliable.
- Fix pass driver, to return CCB to user level in case of error.
- Increase number of retries in cd driver, as device may return several UAs.
modularize it so that new transports can be created.
Add a transport for SATA
Add a periph+protocol layer for ATA
Add a driver for AHCI-compliant hardware.
Add a maxio field to CAM so that drivers can advertise their max
I/O capability. Modify various drivers so that they are insulated
from the value of MAXPHYS.
The new ATA/SATA code supports AHCI-compliant hardware, and will override
the classic ATA driver if it is loaded as a module at boot time or compiled
into the kernel. The stack now support NCQ (tagged queueing) for increased
performance on modern SATA drives. It also supports port multipliers.
ATA drives are accessed via 'ada' device nodes. ATAPI drives are
accessed via 'cd' device nodes. They can all be enumerated and manipulated
via camcontrol, just like SCSI drives. SCSI commands are not translated to
their ATA equivalents; ATA native commands are used throughout the entire
stack, including camcontrol. See the camcontrol manpage for further
details. Testing this code may require that you update your fstab, and
possibly modify your BIOS to enable AHCI functionality, if available.
This code is very experimental at the moment. The userland ABI/API has
changed, so applications will need to be recompiled. It may change
further in the near future. The 'ada' device name may also change as
more infrastructure is completed in this project. The goal is to
eventually put all CAM busses and devices until newbus, allowing for
interesting topology and management options.
Few functional changes will be seen with existing SCSI/SAS/FC drivers,
though the userland ABI has still changed. In the future, transports
specific modules for SAS and FC may appear in order to better support
the topologies and capabilities of these technologies.
The modularization of CAM and the addition of the ATA/SATA modules is
meant to break CAM out of the mold of being specific to SCSI, letting it
grow to be a framework for arbitrary transports and protocols. It also
allows drivers to be written to support discrete hardware without
jeopardizing the stability of non-related hardware. While only an AHCI
driver is provided now, a Silicon Image driver is also in the works.
Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware
is possible and encouraged. Help with new transports is also encouraged.
Submitted by: scottl, mav
Approved by: re
things around so the periph destructors look alike. Based on a patch
by Jaakko Heinonen.
Submitted by: Jaakko Heinonen
Reviewed by: scottl
Approved by: rwatson (mentor)
Sponsored by: FreeBSD Foundation
use to synchornize and protect all data objects that are used for that
SIM. Drivers that are not yet MPSAFE register Giant and operate as
usual. RIght now, no drivers are MPSAFE, though a few will be changed
in the coming week as this work settles down.
The driver API has changed, so all CAM drivers will need to be recompiled.
The userland API has not changed, so tools like camcontrol do not need to
be recompiled.
Introduce d_version field in struct cdevsw, this must always be
initialized to D_VERSION.
Flip sense of D_NOGIANT flag to D_NEEDGIANT, this involves removing
four D_NOGIANT flags and adding 145 D_NEEDGIANT flags.
Free approx 86 major numbers with a mostly automatically generated patch.
A number of strategic drivers have been left behind by caution, and a few
because they still (ab)use their major number.
branches:
Initialize struct cdevsw using C99 sparse initializtion and remove
all initializations to default values.
This patch is automatically generated and has been tested by compiling
LINT with all the fields in struct cdevsw in reverse order on alpha,
sparc64 and i386.
Approved by: re(scottl)
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
Some of the major changes include:
- The SCSI error handling portion of cam_periph_error() has
been broken out into a number of subfunctions to better
modularize the code that handles the hierarchy of SCSI errors.
As a result, the code is now much easier to read.
- String handling and error printing has been significantly
revamped. We now use sbufs to do string formatting instead
of using printfs (for the kernel) and snprintf/strncat (for
userland) as before.
There is a new catchall error printing routine,
cam_error_print() and its string-based counterpart,
cam_error_string() that allow the kernel and userland
applications to pass in a CCB and have errors printed out
properly, whether or not they're SCSI errors. Among other
things, this helped eliminate a fair amount of duplicate code
in camcontrol.
We now print out more information than before, including
the CAM status and SCSI status and the error recovery action
taken to remedy the problem.
- sbufs are now available in userland, via libsbuf. This
change was necessary since most of the error printing code
is shared between libcam and the kernel.
- A new transfer settings interface is included in this checkin.
This code is #ifdef'ed out, and is primarily intended to aid
discussion with HBA driver authors on the final form the
interface should take. There is example code in the ahc(4)
driver that implements the HBA driver side of the new
interface. The new transfer settings code won't be enabled
until we're ready to switch all HBA drivers over to the new
interface.
src/Makefile.inc1,
lib/Makefile: Add libsbuf. It must be built before libcam,
since libcam uses sbuf routines.
libcam/Makefile: libcam now depends on libsbuf.
libsbuf/Makefile: Add a makefile for libsbuf. This pulls in the
sbuf sources from sys/kern.
bsd.libnames.mk: Add LIBSBUF.
camcontrol/Makefile: Add -lsbuf. Since camcontrol is statically
linked, we can't depend on the dynamic linker
to pull in libsbuf.
camcontrol.c: Use cam_error_print() instead of checking for
CAM_SCSI_STATUS_ERROR on every failed CCB.
sbuf.9: Change the prototypes for sbuf_cat() and
sbuf_cpy() so that the source string is now a
const char *. This is more in line wth the
standard system string functions, and helps
eliminate warnings when dealing with a const
source buffer.
Fix a typo.
cam.c: Add description strings for the various CAM
error status values, as well as routines to
look up those strings.
Add new cam_error_string() and
cam_error_print() routines for userland and
the kernel.
cam.h: Add a new CAM flag, CAM_RETRY_SELTO.
Add enumerated types for the various options
available with cam_error_print() and
cam_error_string().
cam_ccb.h: Add new transfer negotiation structures/types.
Change inq_len in the ccb_getdev structure to
be "reserved". This field has never been
filled in, and will be removed when we next
bump the CAM version.
cam_debug.h: Fix typo.
cam_periph.c: Modularize cam_periph_error(). The SCSI error
handling part of cam_periph_error() is now
in camperiphscsistatuserror() and
camperiphscsisenseerror().
In cam_periph_lock(), increase the reference
count on the periph while we wait for our lock
attempt to succeed so that the periph won't go
away while we're sleeping.
cam_xpt.c: Add new transfer negotiation code. (ifdefed
out)
Add a new function, xpt_path_string(). This
is a string/sbuf analog to xpt_print_path().
scsi_all.c: Revamp string handing and error printing code.
We now use sbufs for much of the string
formatting code. More of that code is shared
between userland the kernel.
scsi_all.h: Get rid of SS_TURSTART, it wasn't terribly
useful in the first place.
Add a new error action, SS_REQSENSE. (Send a
request sense and then retry the command.)
This is useful when the controller hasn't
performed autosense for some reason.
Change the default actions around a bit.
scsi_cd.c,
scsi_da.c,
scsi_pt.c,
scsi_ses.c: SF_RETRY_SELTO -> CAM_RETRY_SELTO. Selection
timeouts shouldn't be covered by a sense flag.
scsi_pass.[ch]: SF_RETRY_SELTO -> CAM_RETRY_SELTO.
Get rid of the last vestiges of a read/write
interface.
libkern/bsearch.c,
sys/libkern.h,
conf/files: Add bsearch.c, which is needed for some of the
new table lookup routines.
aic7xxx_freebsd.c: Define AHC_NEW_TRAN_SETTINGS if
CAM_NEW_TRAN_CODE is defined.
sbuf.h,
subr_sbuf.c: Add the appropriate #ifdefs so sbufs can
compile and run in userland.
Change sbuf_printf() to use vsnprintf()
instead of kvprintf(), which is only available
in the kernel.
Change the source string for sbuf_cpy() and
sbuf_cat() to be a const char *.
Add __BEGIN_DECLS and __END_DECLS around
function prototypes since they're now exported
to userland.
kdump/mkioctls: Include stdio.h before cam.h since cam.h now
includes a function with a FILE * argument.
Submitted by: gibbs (mostly)
Reviewed by: jdp, marcel (libsbuf makefile changes)
Reviewed by: des (sbuf changes)
Reviewed by: ken