Commit Graph

241 Commits

Author SHA1 Message Date
andre
84937ac44f Test the mbuf flags against the correct constant. The previous version
worked as intended but only by chance.  MT_HEADER == M_PKTHDR == 0x2.
2005-08-30 16:21:51 +00:00
rik
d732ff5ca2 Use implicit type cast for ->k_lock to fix compilation of ndis
as a part of the GENERIC kernel with INVARIANT* and WITNESS*
turned off.
(For non GENERIC kernel KTR and MUTEX_PROFILING should be also
off).

Submitted by:	Eygene A. Ryabinkin <rea at rea dot mbslab dot kiae dot ru>
Approved by:	re (scottl)
PR:		81767
2005-07-08 18:36:59 +00:00
brooks
567ba9b00a Stop embedding struct ifnet at the top of driver softcs. Instead the
struct ifnet or the layer 2 common structure it was embedded in have
been replaced with a struct ifnet pointer to be filled by a call to the
new function, if_alloc(). The layer 2 common structure is also allocated
via if_alloc() based on the interface type. It is hung off the new
struct ifnet member, if_l2com.

This change removes the size of these structures from the kernel ABI and
will allow us to better manage them as interfaces come and go.

Other changes of note:
 - Struct arpcom is no longer referenced in normal interface code.
   Instead the Ethernet address is accessed via the IFP2ENADDR() macro.
   To enforce this ac_enaddr has been renamed to _ac_enaddr.
 - The second argument to ether_ifattach is now always the mac address
   from driver private storage rather than sometimes being ac_enaddr.

Reviewed by:	sobomax, sam
2005-06-10 16:49:24 +00:00
nyan
0fce92f5c4 Remove bus_{mem,p}io.h and related code for a micro-optimization on i386
and amd64.  The optimization is a trivial on recent machines.

Reviewed by:	-arch (imp, marcel, dfr)
2005-05-29 04:42:30 +00:00
wpaul
df85175aeb Missed kern_windrv.c in the last checkin. 2005-05-20 04:01:36 +00:00
wpaul
29dcab8107 Deal with a few bootstrap issues:
We can't call KeFlushQueuedDpcs() during bootstrap (cold == 1), since
the flush operation sleeps to wait for completion, and we can't sleep
here (clowns will eat us).

On an i386 SMP system, if we're loaded/probed/attached during bootstrap,
smp_rendezvous() won't run us anywhere except CPU 0 (since the other CPUs
aren't launched until later), which means we won't be able to set up
the GDTs anywhere except CPU 0. To deal with this case, ctxsw_utow()
now checks to see if the TID for the current processor has been properly
initialized and sets up the GTD for the current CPU if not.

Lastly, in if_ndis.c:ndis_shutdown(), do an ndis_stop() to insure we
really halt the NIC and stop interrupts from happening.

Note that loading a driver during bootstrap is, unfortunately, kind of
a hit or miss sort of proposition. In Windows, the expectation is that
by the time a given driver's MiniportInitialize() method is called,
the system is already in 'multiuser' state, i.e. it's up and running
enough to support all the stuff specified in the NDIS API, which includes
the underlying OS-supplied facilities it implicitly depends on, such as
having all CPUs running, having the DPC queues initialized, WorkItem
threads running, etc. But in UNIX, a lot of that stuff won't work during
bootstrap. This causes a problem since we need to call MiniportInitialize()
at least once during ndis_attach() in order to find out what kind of NIC
we have and learn its station address.

What this means is that some cards just plain won't work right if
you try to pre-load the driver along with the kernel: they'll only be
probed/attach correctly if the driver is kldloaded _after_ the system
has reached multiuser. I can't really think of a way around this that
would still preserve the ability to use an NDIS device for diskless
booting.
2005-05-20 04:00:50 +00:00
wpaul
cb815ff30f In ndis_halt_nic(), invalidate the miniportadapterctx early to try and
prevent anything from making calls to the NIC while it's being shut down.
This is yet another attempt to stop things like mdnsd from trying to
poke at the card while it's not properly initialized and panicking
the system.

Also, remove unneeded debug message from if_ndis.c.
2005-05-20 02:35:43 +00:00
wpaul
8e4107ff8f Fix some of the things I broke so that the SMC2602W (AMD Am1772) driver
works again.

This driver uses NdisScheduleWorkItem(), and we have to take special steps
to insure that its workitems don't collide with any of the other workitems
used by the NDISulator. In particular, if one of the driver's work jobs
blocks, it can prevent NdisMAllocateSharedMemoryAsync() from completing
when expected.

The original hack to fix this was to have NdisMAllocateSharedMemoryAsync()
defer its work to the DPC queue instead of the general task queue. To
fix it now, I decided to add some additional workitem threads. (There's
supposed to be a pool of worker threads in Windows anyway.) Currently,
there are 4. There should be at least 2. One is reserved for the legacy
ExQueueWorkItem() API, while the others are used in round-robin by the
IoQueueWorkItem() API. NdisMAllocateSharedMemoryAsync() uses the latter
API while NdisScheduleWorkItem() uses the former, so the deadlock is
avoided.

Fixed NdisMRegisterDevice()/NdisMDeregisterDevice() to work a little
more sensibly with the new driver_object/device_object framework. It
doesn't really register a working user-mode interface, but the existing
code was completely wrong for the new framework.

Fixed a couple of bugs dealing with the cancellation of events and
DPCs. When cancelling an event that's still on the timer queue (i.e.
hasn't expired yet), reset dh_inserted in its dispatch header to FALSE.
Previously, it was left set to TRUE, which would make a cancelled
timer appear to have not been cancelled. Also, when removing a DPC
from a queue, reset its list pointers, otherwise a cancelled DPC
might mistakenly be treated as still pending.

Lastly, fix the behavior of ntoskrnl_wakeup() when dealing with
objects that have nobody waiting on them: sync event objects get
their signalled state reset to FALSE, but notification objects
should still be set to TRUE.
2005-05-19 04:44:26 +00:00
wpaul
3e9d45596e Remove harmless bit of leftover debug code. 2005-05-16 15:44:41 +00:00
wpaul
0228d4cac8 Correct some problems with workitem usage. NdisScheduleWorkItem() does
not use exactly the same workitem sturcture as ExQueueWorkItem() like
I originally thought it did.
2005-05-16 15:29:21 +00:00
wpaul
09647ee931 Add support for NdisMEthIndicateReceive() and MiniportTransferData().
The Ralink RT2500 driver uses this API instead of NdisMIndicateReceivePacket().

Drivers use NdisMEthIndicateReceive() when they know they support
802.3 media and expect to hand their packets only protocols that want
to deal with that particular media type. With this API, the driver does
not manage its own NDIS_PACKET/NDIS_BUFFER structures. Instead, it
lets bound protocols have a peek at the data, and then they supply
an NDIS_PACKET/NDIS_BUFFER combo to the miniport driver, into which
it copies the packet data.

Drivers use NdisMIndicateReceivePacket() to allow their packets to
be read by any protocol, not just those bound to 802.3 media devices.

To make this work, we need an internal pool of NDIS_PACKETS for
receives. Currently, we check to see if the driver exports a
MiniportTransferData() method in its characteristics structure,
and only allocate the pool for drivers that have this method.

This should allow the RT2500 driver to work correctly, though I
still have to fix ndiscvt(8) to parse its .inf file properly.

Also, change kern_ndis.c:ndis_halt_nic() to reap timers before
acquiring NDIS_LOCK(), since the reaping process might entail sleeping
briefly (and we can't sleep with a lock held).
2005-05-15 04:27:59 +00:00
wpaul
51b4d0ab71 More fixes for multibus drivers. When calling out to the match
function in if_ndis_pci.c and if_ndis_pccard.c, provide the bustype
too so the stubs can ignore devlists that don't concern them.
2005-05-08 23:19:20 +00:00
wpaul
ebc77ad893 Fix support for Windows drivers that support both PCI and PCMCIA devices at
the same time.

Fix if_ndis_pccard.c so that it sets sc->ndis_dobj and sc->ndis_regvals.

Correct IMPORT_SFUNC() macros for the READ_PORT_BUFFER_xxx() routines,
which take 3 arguments, not 2.

This fixes it so that the Windows driver for my Cisco Aironet 340 PCMCIA
card works again. (Yes, I know the an(4) driver supports this card natively,
but it's the only PCMCIA device I have with a Windows XP driver.)
2005-05-08 23:07:51 +00:00
wpaul
36f8fdfd36 Correct the patch table entries for the 64-bit intrinsic math
routines (_alldiv(), _allmul(), _alludiv(), _aullmul(), etc...)
that use the _stdcall calling convention.

These routines all take two arguments, but the arguments are 64 bits wide.
On the i386 this means they each consume two 32-bit slots on the stack.
Consequently, when we specify the argument count in the IMPORT_SFUNC()
macro, we have to lie and claim there are 4 arguments instead of two.
This will cause the resulting i386 assembly wrapper to push the right
number of longwords onto the stack.

This fixes a crash I discovered with the RealTek 8180 driver, which
uses these routines a lot during initialization.
2005-05-08 09:16:33 +00:00
wpaul
d2ae5c8a71 Cast 64 bit quantity to uintmax_t to print it with %jx. This is
technically a no-op since uintmax_t is uint64_t on all currently
supported architectures, but we should use an explicit cast instead
of depending on this obscure coincidence.
2005-05-05 22:33:06 +00:00
wpaul
819bac8d1e Use %jx instead of %qx to silence compiler warning on amd64. 2005-05-05 15:56:41 +00:00
wpaul
077b71e0fa Avoid sleeping with mutex held in kern_ndis.c.
Remove unused fields from ndis_miniport_block.

Fix a bug in KeFlushQueuedDpcs() (we weren't calculating the kq pointer
correctly).

In if_ndis.c, clear the IFF_RUNNING flag before calling ndis_halt_nic().

Add some guards in kern_ndis.c to avoid letting anyone invoke ndis_get_info()
or ndis_set_info() if the NIC isn't fully initialized. Apparently, mdnsd
will sometimes try to invoke the ndis_ioctl() routine at exactly the
wrong moment (to futz with its multicast filters) when the interface
comes up, and can trigger a crash unless we guard against it.
2005-05-05 06:14:59 +00:00
wpaul
bb2b136388 Remove extranaous free() of ASCII filename from NdisOpenFile().
Oh, one additional change I forgot to mention in the last commit:
NdisOpenFile() was broken in the case for firmware files that were
pre-loaded as modules. When searching for the module in NdisOpenFile(),
we would match against a symbol name, which would contain the string
we were looking for, then save a pointer to the linker file handle.
Later, in NdisMapFile(), we would refer to the filename hung off
this handle when trying to find the starting address symbol. Only
problem is, this filename is different from the embedded symbol
name we're searching for, so the mapping would fail. I found this
problem while testing the AirGo driver, which requires a small
firmware file.
2005-05-05 04:16:13 +00:00
wpaul
e9bace5ba1 This commit makes a bunch of changes, some big, some not so big.
- Remove the old task threads from kern_ndis.c and reimplement them in
  subr_ntoskrnl.c, in order to more properly emulate the Windows DPC
  API. Each CPU gets its own DPC queue/thread, and each queue can
  have low, medium and high importance DPCs. New APIs implemented:
  KeSetTargetProcessorDpc(), KeSetImportanceDpc() and KeFlushQueuedDpcs().
  (This is the biggest change.)

- Fix a bug in NdisMInitializeTimer(): the k_dpc pointer in the
  nmt_timer embedded in the ndis_miniport_timer struct must be set
  to point to the DPC, also embedded in the struct. Failing to do
  this breaks dequeueing of DPCs submitted via timers, and in turn
  breaks cancelling timers.

- Fix a bug in KeCancelTimer(): if the timer is interted in the timer
  queue (i.e. the timeout callback is still pending), we have to both
  untimeout() the timer _and_ call KeRemoveQueueDpc() to nuke the DPC
  that might be pending. Failing to do this breaks cancellation of
  periodic timers, which always appear to be inserted in the timer queue.

- Make use of the nmt_nexttimer field in ndis_miniport_timer: keep a
  queue of pending timers and cancel them all in ndis_halt_nic(), prior
  to calling MiniportHalt(). Also call KeFlushQueuedDpcs() to make sure
  any DPCs queued by the timers have expired.

- Modify NdisMAllocateSharedMemory() and NdisMFreeSharedMemory() to keep
  track of both the virtual and physical addresses of the shared memory
  buffers that get handed out. The AirGo MIMO driver appears to have a bug
  in it: for one of the segments is allocates, it returns the wrong
  virtual address. This would confuse NdisMFreeSharedMemory() and cause
  a crash. Why it doesn't crash Windows too I have no idea (from reading
  the documentation for NdisMFreeSharedMemory(), it appears to be a violation
  of the API).

- Implement strstr(), strchr() and MmIsAddressValid().

- Implement IoAllocateWorkItem(), IoFreeWorkItem(), IoQueueWorkItem() and
  ExQueueWorkItem(). (This is the second biggest change.)

- Make NdisScheduleWorkItem() call ExQueueWorkItem(). (Note that the
  ExQueueWorkItem() API is deprecated by Microsoft, but NDIS still uses
  it, since NdisScheduleWorkItem() is incompatible with the IoXXXWorkItem()
  API.)

- Change if_ndis.c to use the NdisScheduleWorkItem() interface for scheduling
  tasks.

With all these changes and fixes, the AirGo MIMO driver for the Belkin
F5D8010 Pre-N card now works. Special thanks to Paul Robinson
(paul dawt robinson at pwermedia dawt net) for the loan of a card
for testing.
2005-05-05 03:56:09 +00:00
wpaul
b493dd59e2 Throw the switch on the new driver generation/loading mechanism. From
here on in, if_ndis.ko will be pre-built as a module, and can be built
into a static kernel (though it's not part of GENERIC). Drivers are
created using the new ndisgen(8) script, which uses ndiscvt(8) under
the covers, along with a few other tools. The result is a driver module
that can be kldloaded into the kernel.

A driver with foo.inf and foo.sys files will be converted into
foo_sys.ko (and foo_sys.o, for those who want/need to make static
kernels). This module contains all of the necessary info from the
.INF file and the driver binary image, converted into an ELF module.
You can kldload this module (or add it to /boot/loader.conf) to have
it loaded automatically. Any required firmware files can be bundled
into the module as well (or converted/loaded separately).

Also, add a workaround for a problem in NdisMSleep(). During system
bootstrap (cold == 1), msleep() always returns 0 without actually
sleeping. The Intel 2200BG driver uses NdisMSleep() to wait for
the NIC's firmware to come to life, and fails to load if NdisMSleep()
doesn't actually delay. As a workaround, if msleep() (and hence
ndis_thsuspend()) returns 0, use a hard DELAY() to sleep instead).
This is not really the right thing to do, but we can't really do much
else. At the very least, this makes the Intel driver happy.

There are probably other drivers that fail in this way during bootstrap.
Unfortunately, the only workaround for those is to avoid pre-loading
them and kldload them once the system is running instead.
2005-04-24 20:21:22 +00:00
wpaul
637643a433 Now that the GDT has been reorganized and GNDIS_SEL has been reserved
for us, use it if it's available, otherwise default to using slot 7
as before.
2005-04-17 19:36:08 +00:00
wpaul
f2f41f37b1 When setting up the new stack for a function in x86_64_wrap(), make
sure to make it 16-byte aligned, in keeping with amd64 calling
convention requirements.

Submitted by:	Mikore Li at sun dot com
2005-04-16 04:47:15 +00:00
wpaul
a5aab37b5d In winx32_wrap.S, preserve return values in the fastcall and regparm
wrappers by pushing them onto the stack rather than keeping them in %esi
and %edi.
2005-04-11 17:04:49 +00:00
wpaul
a3b2d3191d Create new i386 windows/bsd thunking layer, similar to the amd64 thunking
layer, but with a twist.

The twist has to do with the fact that Microsoft supports structured
exception handling in kernel mode. On the i386 arch, exception handling
is implemented by hanging an exception registration list off the
Thread Environment Block (TEB), and the TEB is accessed via the %fs
register. The problem is, we use %fs as a pointer to the pcpu stucture,
which means any driver that tries to write through %fs:0 will overwrite
the curthread pointer and make a serious mess of things.

To get around this, Project Evil now creates a special entry in
the GDT on each processor. When we call into Windows code, a context
switch routine will fix up %fs so it points to our new descriptor,
which in turn points to a fake TEB. When the Windows code returns,
or calls out to an external routine, we swap %fs back again. Currently,
Project Evil makes use of GDT slot 7, which is all 0s by default.
I fully expect someone to jump up and say I can't do that, but I
couldn't find any code that makes use of this entry anywhere. Sadly,
this was the only method I could come up with that worked on both
UP and SMP. (Modifying the LDT works on UP, but becomes incredibly
complicated on SMP.) If necessary, the context switching stuff can
be yanked out while preserving the convention calling wrappers.

(Fortunately, it looks like Microsoft uses some special epilog/prolog
code on amd64 to implement exception handling, so the same nastiness
won't be necessary on that arch.)

The advantages are:

- Any driver that uses %fs as though it were a TEB pointer won't
  clobber pcpu.
- All the __stdcall/__fastcall/__regparm stuff that's specific to
  gcc goes away.

Also, while I'm here, switch NdisGetSystemUpTime() back to using
nanouptime() again. It turns out nanouptime() is way more accurate
than just using ticks(). On slower machines, the Atheros drivers
I tested seem to take a long time to associate due to the loss
in accuracy.
2005-04-11 02:02:35 +00:00
wpaul
5f091f4a37 Fix another KeInitializeDpc()/amd64 calling convention issue:
ndis_intrhand() has to be wrapped for the same reason as ndis_timercall().
2005-04-01 16:40:22 +00:00
wpaul
6848972c73 Apparently I'm cursed. ndis_findwrap() should be searching ndis_functbl,
not ntoskrnl_functbl.
2005-03-31 21:20:19 +00:00
wpaul
123cbe5f9b Fix an amd64 issue I overlooked. When setting up a callout to
ndis_timercall() in NdisMInitializeTimer(), we can't use the raw
function pointer. This is because ntoskrnl_run_dpc() expects to
invoke a function with Microsoft calling conventions. On i386,
this works because ndis_timercall() is declared with the __stdcall
attribute, but this is a no-op on amd64. To do it correctly, we
have to generate a wrapper for ndis_timercall() and us the wrapper
instead of of the raw function pointer.

Fix this by adding ndis_timercall() to the funcptr table in subr_ndis.c,
and create ndis_findwrap() to extract the wrapped function from the
table in NdisMInitializeTimer() instead of just passing ndis_timercall()
to KeInitializeDpc() directly.
2005-03-31 16:38:48 +00:00
wpaul
2e83169800 Fix a possible mutex leak in KeSetTimerEx(): if timer is NULL, we
bail out without releasing the dispatcher lock. Move the lock acquisition
after the pointer test to avoid this.
2005-03-30 16:22:48 +00:00
wpaul
0257351eba Remove a couple of #ifdef 0'ed code blocks left over from Atheros debugging.
Remember to reset ndis_pendingreq to NULL when bailing out of
ndis_set_info() or ndis_get_info() due to miniportadapterctx not
being set.
2005-03-30 02:50:06 +00:00
wpaul
bb3714b327 The filehandle allocated in NdisOpenFile() is allocated using
ExAllocatePoolWithTag(), not malloc(), so it should be released
with ExFreePool(), not free(). Fix a couple if instances of
free(fh, ...) that got overlooked.
2005-03-28 22:03:47 +00:00
wpaul
9920f4f146 Another Coverity fix from Sam: add NULL pointer test in
NdisMFreeSharedMemory() (if the list is already empty, just bail).
2005-03-28 21:09:00 +00:00
wpaul
3e1273271d More additions for amd64:
- On amd64, InterlockedPushEntrySList() and InterlockedPopEntrySList()
  are mapped to ExpInterlockedPushEntrySList and
  ExpInterlockedPopEntrySList() via macros (which do the same thing).
  Add IMPORT_FUNC_MAP()s for these.

- Implement ExQueryDepthSList().
2005-03-28 20:46:08 +00:00
wpaul
386c0634e4 Fix resource leak found by Coverity (via Sam Leffler). 2005-03-28 20:16:26 +00:00
wpaul
7f6e70f819 Fix for amd64. 2005-03-28 20:13:14 +00:00
wpaul
b1238bf60e Fix another amd64 issue with lookaside lists: we initialize the
alloc and free routine pointers in the lookaside list with pointers
to ExAllocatePoolWithTag() and ExFreePool() (in the case where the
driver does not provide its own alloc and free routines). For amd64,
this is wrong: we have to use pointers to the wrapped versions of these
functions, not the originals.
2005-03-28 19:27:58 +00:00
wpaul
12c3eeb4fa Tweak to hopefully make lookaside lists work on amd64: in Windows, the
nll_obsoletelock field in the lookaside list structure is only defined
for the i386 arch. For amd64, the field is gone, and different list
update routines are used which do their locking internally. Apparently
the Inprocomm amd64 driver uses lookaside lists. I'm not positive this
will make it work yet since I don't have an Inprocomm NIC to test, but
this needs to be fixed anyway.
2005-03-28 17:36:06 +00:00
wpaul
913253e3c7 Spell '0' as 'FALSE' when initializing npp_validcounts. (Doesn't change
the code, but emphasises that this field is used as a boolean.)
2005-03-28 17:06:47 +00:00
wpaul
a8513e48c5 Unbreak the build: correct the resource list traversal code for
__FreeBSD_version >= 600022.
2005-03-28 16:49:27 +00:00
wpaul
74837aa85b Argh. PCI resource list became an STAILQ instead of an SLIST. Try to
deal with this while maintaining backards source compatibility with
stable.
2005-03-27 10:35:07 +00:00
wpaul
e41bbf9219 Check in ntoskrnl_var.h, which should have been included in the
previous commit.
2005-03-27 10:16:45 +00:00
wpaul
959879757b Finally bring an end to the great "make the Atheros NDIS driver
work on SMP" saga. After several weeks and much gnashing of teeth,
I have finally tracked down all the problems, despite their best
efforts to confound and annoy me.

Problem nunmber one: the Atheros windows driver is _NOT_ a de-serialized
miniport! It used to be that NDIS drivers relied on the NDIS library
itself for all their locking and serialization needs. Transmit packet
queues were all handled internally by NDIS, and all calls to
MiniportXXX() routines were guaranteed to be appropriately serialized.
This proved to be a performance problem however, and Microsoft
introduced de-serialized miniports with the NDIS 5.x spec. Microsoft
still supports serialized miniports, but recommends that all new drivers
written for Windows XP and later be deserialized. Apparently Atheros
wasn't listening when they said this.

This means (among other things) that we have to serialize calls to
MiniportSendPackets(). We also have to serialize calls to MiniportTimer()
that are triggered via the NdisMInitializeTimer() routine. It finally
dawned on me why NdisMInitializeTimer() takes a special
NDIS_MINIPORT_TIMER structure and a pointer to the miniport block:
the timer callback must be serialized, and it's only by saving the
miniport block handle that we can get access to the serialization
lock during the timer callback.

Problem number two: haunted hardware. The thing that was _really_
driving me absolutely bonkers for the longest time is that, for some
reason I couldn't understand, my test machine would occasionally freeze
or more frustratingly, reset completely. That's reset and in *pow!*
back to the BIOS startup. No panic, no crashdump, just a reset. This
appeared to happen most often when MiniportReset() was called. (As
to why MiniportReset() was being called, see problem three below.)
I thought maybe I had created some sort of horrible deadlock
condition in the process of adding the serialization, but after three
weeks, at least 6 different locking implementations and heroic efforts
to debug the spinlock code, the machine still kept resetting. Finally,
I started single stepping through the MiniportReset() routine in
the driver using the kernel debugger, and this ultimately led me to
the source of the problem.

One of the last things the Atheros MiniportReset() routine does is
call NdisReadPciSlotInformation() several times to inspect a portion
of the device's PCI config space. It reads the same chunk of config
space repeatedly, in rapid succession. Presumeably, it's polling
the hardware for some sort of event. The reset occurs partway through
this process. I discovered that when I single-stepped through this
portion of the routine, the reset didn't occur. So I inserted a 1
microsecond delay into the read loop in NdisReadPciSlotInformation().
Suddenly, the reset was gone!!

I'm still very puzzled by the whole thing. What I suspect is happening
is that reading the PCI config space so quickly is causing a severe
PCI bus error. My test system is a Sun w2100z dual Opteron system,
and the NIC is a miniPCI card mounted in a miniPCI-to-PCI carrier card,
plugged into a 100Mhz PCI slot. It's possible that this combination of
hardware causes a bus protocol violation in this scenario which leads
to a fatal machine check. This is pure speculation though. Really all I
know for sure is that inserting the delay makes the problem go away.
(To quote Homer Simpson: "I don't know how it works, but fire makes
it good!")

Problem number three: NdisAllocatePacket() needs to make sure to
initialize the npp_validcounts field in the 'private' section of
the NDIS_PACKET structure. The reason if_ndis was calling the
MiniportReset() routine in the first place is that packet transmits
were sometimes hanging. When sending a packet, an NDIS driver will
call NdisQueryPacket() to learn how many physical buffers the packet
resides in. NdisQueryPacket() is actually a macro, which traverses
the NDIS_BUFFER list attached to the NDIS_PACKET and stashes some
of the results in the 'private' section of the NDIS_PACKET. It also
sets the npp_validcounts field to TRUE To indicate that the results are
now valid. The problem is, now that if_ndis creates a pool of transmit
packets via NdisAllocatePacketPool(), it's important that each time
a new packet is allocated via NdisAllocatePacket() that validcounts
be initialized to FALSE. If it isn't, and a previously transmitted
NDIS_PACKET is pulled out of the pool, it may contain stale data
from a previous transmission which won't get updated by NdisQueryPacket().
This would cause the driver to miscompute the number of fragments
for a given packet, and botch the transmission.

Fixing these three problems seems to make the Atheros driver happy
on SMP, which hopefully means other serialized miniports will be
happy too.

And there was much rejoicing.

Other stuff fixed along the way:

- Modified ndis_thsuspend() to take a mutex as an argument. This
  allows KeWaitForSingleObject() and KeWaitForMultipleObjects() to
  avoid any possible race conditions with other routines that
  use the dispatcher lock.

- Fixed KeCancelTimer() so that it returns the correct value for
  'pending' according to the Microsoft documentation

- Modfied NdisGetSystemUpTime() to use ticks and hz rather than
  calling nanouptime(). Also added comment that this routine wraps
  after 49.7 days.

- Added macros for KeAcquireSpinLock()/KeReleaseSpinLock() to hide
  all the MSCALL() goop.

- For x86, KeAcquireSpinLockRaiseToDpc() needs to be a separate
  function. This is because it's supposed to be _stdcall on the x86
  arch, whereas KeAcquireSpinLock() is supposed to be _fastcall.
  On amd64, all routines use the same calling convention so we can
  just map KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
  and it will work. (The _fastcall attribute is a no-op on amd64.)

- Implement and use IoInitializeDpcRequest() and IoRequestDpc() (they're
  just macros) and use them for interrupt handling. This allows us to
  move the ndis_intrtask() routine from if_ndis.c to kern_ndis.c.

- Fix the MmInitializeMdl() macro so that is uses sizeof(vm_offset_t)
  when computing mdl_size instead of uint32_t, so that it matches the
  MmSizeOfMdl() routine.

- Change a could of M_WAITOKs to M_NOWAITs in the unicode routines in
  subr_ndis.c.

- Use the dispatcher lock a little more consistently in subr_ntoskrnl.c.

- Get rid of the "wait for link event" hack in ndis_init(). Now that
  I fixed NdisReadPciSlotInformation(), it seems I don't need it anymore.
  This should fix the witness panic a couple of people have reported.

- Use MSCALL1() when calling the MiniportHangCheck() function in
  ndis_ticktask(). I accidentally missed this one when adding the
  wrapping for amd64.
2005-03-27 10:14:36 +00:00
phk
00a6eab3e5 s/SLIST/STAILQ/
/imp/a\
pointy hat
.
2005-03-18 11:57:44 +00:00
wpaul
a72168b811 When you call MiniportInitialize() for an 802.11 driver, it will
at some point result in a status event being triggered (it should
be a link down event: the Microsoft driver design guide says you
should generate one when the NIC is initialized). Some drivers
generate the event during MiniportInitialize(), such that by the
time MiniportInitialize() completes, the NIC is ready to go. But
some drivers, in particular the ones for Atheros wireless NICs,
don't generate the event until after a device interrupt occurs
at some point after MiniportInitialize() has completed.

The gotcha is that you have to wait until the link status event
occurs one way or the other before you try to fiddle with any
settings (ssid, channel, etc...). For the drivers that set the
event sycnhronously this isn't a problem, but for the others
we have to pause after calling ndis_init_nic() and wait for the event
to arrive before continuing. Failing to wait can cause big trouble:
on my SMP system, calling ndis_setstate_80211() after ndis_init_nic()
completes, but _before_ the link event arrives, will lock up or
reset the system.

What we do now is check to see if a link event arrived while
ndis_init_nic() was running, and if it didn't we msleep() until
it does.

Along the way, I discovered a few other problems:

- Defered procedure calls run at PASSIVE_LEVEL, not DISPATCH_LEVEL.
  ntoskrnl_run_dpc() has been fixed accordingly. (I read the documentation
  wrong.)

- Similarly, the NDIS interrupt handler, which is essentially a
  DPC, also doesn't need to run at DISPATCH_LEVEL. ndis_intrtask()
  has been fixed accordingly.

- MiniportQueryInformation() and MiniportSetInformation() run at
  DISPATCH_LEVEL, and each request must complete before another
  can be submitted. ndis_get_info() and ndis_set_info() have been
  fixed accordingly.

- Turned the sleep lock that guards the NDIS thread job list into
  a spin lock. We never do anything with this lock held except manage
  the job list (no other locks are held), so it's safe to do this,
  and it's possible that ndis_sched() and ndis_unsched() can be
  called from DISPATCH_LEVEL, so using a sleep lock here is
  semantically incorrect. Also updated subr_witness.c to add the
  lock to the order list.
2005-03-07 03:05:31 +00:00
wpaul
593ae58297 MAXPATHLEN is 1024, which means NdisOpenFile() and ndis_find_sym() were
both consuming 1K of stack space. This is unfriendly. Allocate the buffers
off the heap instead. It's a little slower, but these aren't performance
critical routines.

Also, add a spinlock to NdisAllocatePacketPool(), NdisAllocatePacket(),
NdisFreePacketPool() and NdisFreePacket(). The pool is maintained as a
linked list. I don't know for a fact that it can be corrupted, but why
take chances.
2005-03-03 03:51:02 +00:00
wpaul
88eacaa717 In windrv_load(), I was allocating the driver object using
malloc(sizeof(device_object), ...) by mistake. Correct this, and
rename "dobj" to "drv" to make it a bit clearer what this variable
is supposed to be.

Spotted by: Mikore Li at Sun dot comnospamplzkthx
2005-03-01 17:21:25 +00:00
wpaul
d20416c2fe Don't need to do MmInitializeMdl() in ndis_mtop() anymore:
IoInitializeMdl() does it internally (and doing it again here
messes things up).
2005-02-26 07:11:17 +00:00
wpaul
15a925bf93 MDLs are supposed to be variable size (they include an array of pages
that describe a buffer of variable size). The problem is, allocating
MDLs off the heap is slow, and it can happen that drivers will allocate
lots and lots of lots of MDLs as they run.

As a compromise, we now do the following: we pre-allocate a zone for
MDLs big enough to describe any buffer with 16 or less pages. If
IoAllocateMdl() needs a MDL for a buffer with 16 or less pages, we'll
allocate it from the zone. Otherwise, we allocate it from the heap.
MDLs allocate from the zone have a flag set in their mdl_flags field.
When the MDL is released, IoMdlFree() will uma_zfree() the MDL if
it has the MDL_ZONE_ALLOCED flag set, otherwise it will release it
to the heap.

The assumption is that 16 pages is a "big number" and we will rarely
need MDLs larger than that.

- Moved the ndis_buffer zone to subr_ntoskrnl.c from kern_ndis.c
  and named it mdl_zone.

- Modified IoAllocateMdl() and IoFreeMdl() to use uma_zalloc() and
  uma_zfree() if necessary.

- Made ndis_mtop() use IoAllocateMdl() instead of calling uma_zalloc()
  directly.

Inspired by: discussion with Giridhar Pemmasani
2005-02-26 00:22:16 +00:00
wpaul
371673aec8 Add macros to construct Windows IOCTL codes, and to extract function
codes from an IOCTL. (The USB module will need them later.)
2005-02-25 18:25:48 +00:00
wpaul
64968e6acf Fix a couple of callback instances that should have been wrapped with
MSCALLx().

Add definition for STATUS_PENDING error code.
2005-02-25 08:34:32 +00:00
wpaul
7a502b7309 Compute the right length to use with bzero() when initializing an IRP
in IoInitializeIrp() (must use IoSizeOfIrp() to account for the stack
locations).
2005-02-25 06:31:45 +00:00
wpaul
efb3e8caac - Correct one aspect of the driver_object/device_object/IRP framework:
when we create a PDO, the driver_object associated with it is that
  of the parent driver, not the driver we're trying to attach. For
  example, if we attach a PCI device, the PDO we pass to the NdisAddDevice()
  function should contain a pointer to fake_pci_driver, not to the NDIS
  driver itself. For PCI or PCMCIA devices this doesn't matter because
  the child never needs to talk to the parent bus driver, but for USB,
  the child needs to be able to send IRPs to the parent USB bus driver, and
  for that to work the parent USB bus driver has to be hung off the PDO.

  This involves modifying windrv_lookup() so that we can search for
  bus drivers by name, if necessary. Our fake bus drivers attach themselves
  as "PCI Bus," "PCCARD Bus" and "USB Bus," so we can search for them
  using those names.

  The individual attachment stubs now create and attach PDOs to the
  parent bus drivers instead of hanging them off the NDIS driver's
  object, and in if_ndis.c, we now search for the correct driver
  object depending on the bus type, and use that to find the correct PDO.

  With this fix, I can get my sample USB ethernet driver to deliver
  an IRP to my fake parent USB bus driver's dispatch routines.

- Add stub modules for USB support: subr_usbd.c, usbd_var.h and
  if_ndis_usb.c. The subr_usbd.c module is hooked up the build
  but currently doesn't do very much. It provides the stub USB
  parent driver object and a dispatch routine for
  IRM_MJ_INTERNAL_DEVICE_CONTROL. The only exported function at
  the moment is USBD_GetUSBDIVersion(). The if_ndis_usb.c stub
  compiles, but is not hooked up to the build yet. I'm putting
  these here so I can keep them under source code control as I
  flesh them out.
2005-02-24 21:49:14 +00:00
wpaul
6e74cf6e34 Couple of lessons learned during USB driver testing:
- In kern_ndis.c:ndis_unload_driver(), test that ndis_block->nmb_rlist
  is not NULL before trying to free() it.

- In subr_pe.c:pe_get_import_descriptor(), do a case-insensitive
  match on the import module name. Most drivers I have encountered
  link against "ntoskrnl.exe" but the ASIX USB ethernet driver I'm
  testing with wants "NTOSKRNL.EXE."

- In subr_ntoskrnl.c:IoAllocateIrp(), return a pointer to the IRP
  instead of NULL. (Stub code leftover.)

- Also in subr_ntoskrnl.c, add ExAllocatePoolWithTag() and ExFreePool()
  to the function table list so they'll get exported to drivers properly.
2005-02-24 17:58:27 +00:00
wpaul
954c02c21f Implement IoCancelIrp(), IoAcquireCancelSpinLock(), IoReleaseCancelSpinLock()
and a machine-independent though inefficient InterlockedExchange().
In Windows, InterlockedExchange() appears to be implemented in header
files via inline assembly. I would prefer using an atomic.h macro for
this, but there doesn't seem to be one that just does a plain old
atomic exchange (as opposed to compare and exchange). Also implement
IoSetCancelRoutine(), which is just a macro that uses InterlockedExchange().

Fill in IoBuildSynchronousFsdRequest(), IoBuildAsynchronousFsdRequest()
and IoBuildDeviceIoControlRequest() so that they do something useful,
and add a bunch of #defines to ntoskrnl_var.h to help make these work.
These may require some tweaks later.
2005-02-23 16:44:33 +00:00
wpaul
359989e277 Fix a couple of u_int_foos that should have been uint_foos. 2005-02-18 04:33:34 +00:00
wpaul
cb91ac4b68 Make the Win64 -> ELF64 template a little smaller by using a string
copy op to shift arguments on the stack instead of transfering each
argument one by one through a register. Probably doesn't affect overall
operation, but makes the code a little less grotty and easier to update
later if I choose to make the wrapper handle more args. Also add
comments.
2005-02-18 03:22:37 +00:00
wpaul
90e2d970fc Remove redundant label. 2005-02-16 21:24:04 +00:00
wpaul
61fae0841d Fix freeing of custom driver extensions. (ExFreePool() was being
called with the wrong pointer.)
2005-02-16 19:21:07 +00:00
wpaul
a372ba85ce KeAcquireSpinLockRaiseToDpc() and KeReleaseSpinLock() are (at least
for now) exactly the same as KfAcquireSpinLock() and KfReleaseSpinLock().
I implemented the former as small routines in subr_ntoskrnl.c that just
turned around and invoked the latter. But I don't really need the wrapper
routines: I can just create an entries in the ntoskrnl func table that
map KeAcquireSpinLockRaiseToDpc() and KeReleaseSpinLock() to
KfAcquireSpinLock() and KfReleaseSpinLock() directly. This means
the stubs can go away.
2005-02-16 18:18:30 +00:00
wpaul
07b632956a Add support for Windows/x86-64 binaries to Project Evil.
Ville-Pertti Keinonen (will at exomi dot comohmygodnospampleasekthx)
deserves a big thanks for submitting initial patches to make it
work. I have mangled his contributions appropriately.

The main gotcha with Windows/x86-64 is that Microsoft uses a different
calling convention than everyone else. The standard ABI requires using
6 registers for argument passing, with other arguments on the stack.
Microsoft uses only 4 registers, and requires the caller to leave room
on the stack for the register arguments incase the callee needs to
spill them. Unlike x86, where Microsoft uses a mix of _cdecl, _stdcall
and _fastcall, all routines on Windows/x86-64 uses the same convention.
This unfortunately means that all the functions we export to the
driver require an intermediate translation wrapper. Similarly, we have
to wrap all calls back into the driver binary itself.

The original patches provided macros to wrap every single routine at
compile time, providing a secondary jump table with a customized
wrapper for each exported routine. I decided to use a different approach:
the call wrapper for each function is created from a template at
runtime, and the routine to jump to is patched into the wrapper as
it is created. The subr_pe module has been modified to patch in the
wrapped function instead of the original. (On x86, the wrapping
routine is a no-op.)

There are some minor API differences that had to be accounted for:

- KeAcquireSpinLock() is a real function on amd64, not a macro wrapper
  around KfAcquireSpinLock()
- NdisFreeBuffer() is actually IoFreeMdl(). I had to change the whole
  NDIS_BUFFER API a bit to accomodate this.

Bugs fixed along the way:
- IoAllocateMdl() always returned NULL
- kern_windrv.c:windrv_unload() wasn't releasing private driver object
  extensions correctly (found thanks to memguard)

This has only been tested with the driver for the Broadcom 802.11g
chipset, which was the only Windows/x86-64 driver I could find.
2005-02-16 05:41:18 +00:00
wpaul
df89b62698 Next step on the road to IRPs: create and use an imitation of the
Windows DRIVER_OBJECT and DEVICE_OBJECT mechanism so that we can
simulate driver stacking.

In Windows, each loaded driver image is attached to a DRIVER_OBJECT
structure. Windows uses the registry to match up a given vendor/device
ID combination with a corresponding DRIVER_OBJECT. When a driver image
is first loaded, its DriverEntry() routine is invoked, which sets up
the AddDevice() function pointer in the DRIVER_OBJECT and creates
a dispatch table (based on IRP major codes). When a Windows bus driver
detects a new device, it creates a Physical Device Object (PDO) for
it. This is a DEVICE_OBJECT structure, with semantics analagous to
that of a device_t in FreeBSD. The Windows PNP manager will invoke
the driver's AddDevice() function and pass it pointers to the DRIVER_OBJECT
and the PDO.

The AddDevice() function then creates a new DRIVER_OBJECT structure of
its own. This is known as the Functional Device Object (FDO) and
corresponds roughly to a private softc instance. The driver uses
IoAttachDeviceToDeviceStack() to add this device object to the
driver stack for this PDO. Subsequent drivers (called filter drivers
in Windows-speak) can be loaded which add themselves to the stack.
When someone issues an IRP to a device, it travel along the stack
passing through several possible filter drivers until it reaches
the functional driver (which actually knows how to talk to the hardware)
at which point it will be completed. This is how Windows achieves
driver layering.

Project Evil now simulates most of this. if_ndis now has a modevent
handler which will use MOD_LOAD and MOD_UNLOAD events to drive the
creation and destruction of DRIVER_OBJECTs. (The load event also
does the relocation/dynalinking of the image.) We don't have a registry,
so the DRIVER_OBJECTS are stored in a linked list for now. Eventually,
the list entry will contain the vendor/device ID list extracted from
the .INF file. When ndis_probe() is called and detectes a supported
device, it will create a PDO for the device instance and attach it
to the DRIVER_OBJECT just as in Windows. ndis_attach() will then call
our NdisAddDevice() handler to create the FDO. The NDIS miniport block
is now a device extension hung off the FDO, just as it is in Windows.
The miniport characteristics table is now an extension hung off the
DRIVER_OBJECT as well (the characteristics are the same for all devices
handled by a given driver, so they don't need to be per-instance.)
We also do an IoAttachDeviceToDeviceStack() to put the FDO on the
stack for the PDO. There are a couple of fake bus drivers created
for the PCI and pccard buses. Eventually, there will be one for USB,
which will actually accept USB IRP.s

Things should still work just as before, only now we do things in
the proper order and maintain the correct framework to support passing
IRPs between drivers.

Various changes:

- corrected the comments about IRQL handling in subr_hal.c to more
  accurately reflect reality
- update ndiscvt to make the drv_data symbol in ndis_driver_data.h a
  global so that if_ndis_pci.o and/or if_ndis_pccard.o can see it.
- Obtain the softc pointer from the miniport block by referencing
  the PDO rather than a private pointer of our own (nmb_ifp is no
  longer used)
- implement IoAttachDeviceToDeviceStack(), IoDetachDevice(),
  IoGetAttachedDevice(), IoAllocateDriverObjectExtension(),
  IoGetDriverObjectExtension(), IoCreateDevice(), IoDeleteDevice(),
  IoAllocateIrp(), IoReuseIrp(), IoMakeAssociatedIrp(), IoFreeIrp(),
  IoInitializeIrp()
- fix a few mistakes in the driver_object and device_object definitions
- add a new module, kern_windrv.c, to handle the driver registration
  and relocation/dynalinkign duties (which don't really belong in
  kern_ndis.c).
- made ndis_block and ndis_chars in the ndis_softc stucture pointers
  and modified all references to it
- fixed NdisMRegisterMiniport() and NdisInitializeWrapper() so they
  work correctly with the new driver_object mechanism
- changed ndis_attach() to call NdisAddDevice() instead of ndis_load_driver()
  (which is now deprecated)
- used ExAllocatePoolWithTag()/ExFreePool() in lookaside list routines
  instead of kludged up alloc/free routines
- added kern_windrv.c to sys/modules/ndis/Makefile and files.i386.
2005-02-08 17:23:25 +00:00
wpaul
e00c1df907 Apparently, the Intel icc compiler doesn't like it when you use
attributes in casts (i.e. foo = (__stdcall sometype)bar). This only
happens in two places where we need to set up function pointers, so
work around the problem with some void pointer magic.
2005-01-25 17:00:54 +00:00
wpaul
361515a412 Begin the first phase of trying to add IRP support (and ultimately
USB device support):

- Convert all of my locally chosen function names to their actual
  Windows equivalents, where applicable. This is a big no-op change
  since it doesn't affect functionality, but it helps avoid a bit
  of confusion (it's now a lot easier to see which functions are
  emulated Windows API routines and which are just locally defined).

- Turn ndis_buffer into an mdl, like it should have been. The structure
  is the same, but now it belongs to the subr_ntoskrnl module.

- Implement a bunch of MDL handling macros from Windows and use them where
  applicable.

- Correct the implementation of IoFreeMdl().

- Properly implement IoAllocateMdl() and MmBuildMdlForNonPagedPool().

- Add the definitions for struct irp and struct driver_object.

- Add IMPORT_FUNC() and IMPORT_FUNC_MAP() macros to make formatting
  the module function tables a little cleaner. (Should also help
  with AMD64 support later on.)

- Fix if_ndis.c to use KeRaiseIrql() and KeLowerIrql() instead of
  the previous calls to hal_raise_irql() and hal_lower_irql() which
  have been renamed.

The function renaming generated a lot of churn here, but there should
be very little operational effect.
2005-01-24 18:18:12 +00:00
wpaul
2fe7b09cb1 Fix a problem reported by Pierre Beyssac. Sometinmes when ndis_get_info()
calls MiniportQueryInformation(), it will return NDIS_STATUS_PENDING.
When this happens, ndis_get_info() will sleep waiting for a completion
event. If two threads call ndis_get_info() and both end up having to
sleep, they will both end up waiting on the same wait channel, which
can cause a panic in sleepq_add() if INVARIANTS are turned on.

Fix this by having ndis_get_info() use a common mutex rather than
using the process mutex with PROC_LOCK(). Also do the same for
ndis_set_info(). Note that Pierre's original patch also made ndis_thsuspend()
use the new mutex, but ndis_thsuspend() shouldn't need this since
it will make each thread that calls it sleep on a unique wait channel.

Also, it occured to me that we probably don't want to enter
MiniportQueryInformation() or MiniportSetInformation() from more
than one thread at any given time, so now we acquire a Windows
spinlock before calling either of them. The Microsoft documentation
says that MiniportQueryInformation() and MiniportSetInformation()
are called at DISPATCH_LEVEL, and previously we would call
KeRaiseIrql() to set the IRQL to DISPATCH_LEVEL before entering
either routine, but this only guarantees mutual exclusion on
uniprocessor machines. To make it SMP safe, we need to use a real
spinlock. For now, I'm abusing the spinlock embedded in the
NDIS_MINIPORT_BLOCK structure for this purpose. (This may need to be
applied to some of the other routines in kern_ndis.c at a later date.)

Export ntoskrnl_init_lock() (KeInitializeSpinlock()) from subr_ntoskrnl.c
since we need to use in in kern_ndis.c, and since it's technically part
of the Windows kernel DDK API along with the other spinlock routines. Use
it in subr_ndis.c too rather than frobbing the spinlock directly.
2005-01-14 22:39:44 +00:00
imp
362fcfc1e2 Start each of the license/copyright comments with /*- 2005-01-05 22:34:37 +00:00
jhb
7b611b0cb2 Stop explicitly touching td_base_pri outside of the scheduler and simply
set a thread's priority via sched_prio() when that is the desired action.
The schedulers will start managing td_base_pri internally shortly.
2004-12-30 20:29:58 +00:00
bms
94e51111dc Fix compiler warnings, when __stdcall is #defined, by adding explicit casts.
These normally only manifest if the ndis compat module is statically
compiled into a kernel image by way of 'options NDISAPI'.

Submitted by:	Dmitri Nikulin
Approved by:	wpaul
PR:		kern/71449
MFC after:	1 week
2004-09-17 19:54:26 +00:00
wpaul
097de72734 I'm a dumbass: remember to initialize fh->nf_map to NULL in
ndis_open_file() in the module loading case.
2004-08-16 19:25:27 +00:00
wpaul
5b5d2c54bc The Texas Instruments ACX111 driver wants srand(), so provide it. 2004-08-16 18:52:37 +00:00
wpaul
9f377407f3 Make the Texas Instruments 802.11g chipset work with the NDISulator.
This was tested with a Netgear WG311v2 802.11b/g PCI card. Things
that were fixed:

- This chip has two memory mapped regions, one at PCIR_BAR(0) and the
  other at PCIR_BAR(1). This is a little different from the other
  chips I've seen with two PCI shared memory regions, since they tend
  to have the second BAR ad PCIR_BAR(2). if_ndis_pci.c tests explicitly
  for PCIR_BAR(2). This has been changed to simply fill in ndis_res_mem
  first and ndis_res_altmem second, if a second shared memory range
  exists. Given that NDIS drivers seem to scan for BARs in ascending
  order, I think this should be ok.

- Fixed the code that tries to process firmware images that have been
  loaded as .ko files. To save a step, I was setting up the address
  mapping in ndis_open_file(), but ndis_map_file() flags pre-existing
  mappings as an error (to avoid duplicate mappings). Changed this so
  that the mapping is now donw in ndis_map_file() as expected.

- Made the typedef for 'driver_entry' explicitly include __stdcall
  to silence gcc warning in ndis_load_driver().

NOTE: the Texas Instruments ACX111 driver needs firmware. With my
card, there were 3 .bin files shipped with the driver. You must
either put these files in /compat/ndis or convert them with
ndiscvt -f and kldload them so the driver can use them. Without
the firmware image, the NIC won't work.
2004-08-16 18:50:20 +00:00
wpaul
f7237cd696 More minor cleanups and one small bug fix:
- In ntoskrnl_var.h, I had defined compat macros for
  ntoskrnl_acquire_spinlock() and ntoskrnl_release_spinlock() but
  never used them. This is fortunate since they were stale. Fix them
  to work properly. (In Windows/x86 KeAcquireSpinLock() is a macro that
  calls KefAcquireSpinLock(), which lives in HAL.dll. To imitate this,
  ntoskrnl_acquire_spinlock() is just a macro that calls hal_lock(),
  which lives in subr_hal.o.)

- Add macros for ntoskrnl_raise_irql() and ntoskrnl_lower_irql() that
  call hal_raise_irql() and hal_lower_irql().

- Use these macros in kern_ndis.c, subr_ndis.c and subr_ntoskrnl.c.

- Along the way, I realised subr_ndis.c:ndis_lock() was not calling
  hal_lock() correctly (it was using the FASTCALL2() wrapper when
  in reality this routine is FASTCALL1()). Using the
  ntoskrnl_acquire_spinlock() fixes this. Not sure if this actually
  caused any bugs since hal_lock() would have just ignored what
  was in %edx, but it was still bogus.

This hides many of the uses of the FASTCALLx() macros which makes the
code a little cleaner. Should not have any effect on generated object
code, other than the one fix in ndis_lock().
2004-08-04 18:22:50 +00:00
wpaul
6597b4e6fe In ndis_alloc_bufpool() and ndis_alloc_packetpool(), the test to see if
allocating pool memory succeeded was checking the wrong pointer (should
have been looking at *pool, not pool). Corrected this.
2004-08-01 21:15:29 +00:00
wpaul
b9b3caf965 Big mess 'o changes:
- Give ndiscvt(8) the ability to process a .SYS file directly into
  a .o file so that we don't have to emit big messy char arrays into
  the ndis_driver_data.h file. This behavior is currently optional, but
  may become the default some day.

- Give ndiscvt(8) the ability to turn arbitrary files into .ko files
  so that they can be pre-loaded or kldloaded. (Both this and the
  previous change involve using objcopy(1)).

- Give NdisOpenFile() the ability to 'read' files out of kernel memory
  that have been kldloaded or pre-loaded, and disallow the use of
  the normal vn_open() file opening method during bootstrap (when no
  filesystems have been mounted yet). Some people have reported that
  kldloading if_ndis.ko works fine when the system is running multiuser
  but causes a panic when the modile is pre-loaded by /boot/loader. This
  happens with drivers that need to use NdisOpenFile() to access
  external files (i.e. firmware images). NdisOpenFile() won't work
  during kernel bootstrapping because no filesystems have been mounted.
  To get around this, you can now do the following:

        o Say you have a firmware file called firmware.img
        o Do: ndiscvt -f firmware.img -- this creates firmware.img.ko
        o Put the firmware.img.ko in /boot/kernel
        o add firmware.img_load="YES" in /boot/loader.conf
        o add if_ndis_load="YES" and ndis_load="YES" as well

  Now the loader will suck the additional file into memory as a .ko. The
  phony .ko has two symbols in it: filename_start and filename_end, which
  are generated by objcopy(1). ndis_open_file() will traverse each module
  in the module list looking for these symbols and, if it finds them, it'll
  use them to generate the file mapping address and length values that
  the caller of NdisOpenFile() wants.

  As a bonus, this will even work if the file has been statically linked
  into the kernel itself, since the "kernel" module is searched too.
  (ndiscvt(8) will generate both filename.o and filename.ko for you).

- Modify the mechanism used to provide make-pretend FASTCALL support.
  Rather than using inline assembly to yank the first two arguments
  out of %ecx and %edx, we now use the __regparm__(3) attribute (and
  the __stdcall__ attribute) and use some macro magic to re-order
  the arguments and provide dummy arguments as needed so that the
  arguments passed in registers end up in the right place. Change
  taken from DragonflyBSD version of the NDISulator.
2004-08-01 20:04:31 +00:00
wpaul
ab2a462550 *sigh* Fix source code compatibility with 5.2.1-RELEASE _again_.
(Make kdb stuff conditional.)
2004-07-20 20:28:57 +00:00
wpaul
16416501a9 Make NdisReadPcmciaAttributeMemory() and NdisWritePcmciaAttributeMemory()
actually work.

Make the PCI and PCCARD attachments provide a bus_get_resource_list()
method so that resource listing for PCCARD works. PCCARD does not
have a bus_get_resource_list() method (yet), so I faked up the
resource list management in if_ndis_pccard.c, and added
bus_get_resource_list() methods to both if_ndis_pccard.c and if_ndis_pci.c.
The one in the PCI attechment just hands off to the PCI bus code.
The difference is transparent to the NDIS resource handler code.

Fixed ndis_open_file() so that opening files which live on NFS
filesystems work: pass an actual ucred structure to VOP_GETATTR()
(NFS explodes if the ucred structure is NOCRED).

Make NdisMMapIoSpace() handle mapping of PCMCIA attribute memory
resources correctly.

Turn subr_ndis.c:my_strcasecmp() into ndis_strcasecmp() and export
it so that if_ndis_pccard.c can use it, and junk the other copy
of my_strcasecmp() from if_ndis_pccard.c.
2004-07-11 00:19:30 +00:00
marcel
7fd8e71125 Update for the KDB framework:
o  Call kdb_enter() instead of Debugger().

While here, remove a redundant return.
2004-07-10 20:55:15 +00:00
wpaul
966185d797 Fix two problems:
- In subr_ndis.c:ndis_allocate_sharemem(), create the busdma tags
  used for shared memory allocations with a lowaddr of 0x3E7FFFFF.
  This forces the buffers to be mapped to physical/bus addresses within
  the first 1GB of physical memory. It seems that at least one card
  (Linksys Instant Wireless PCI V2.7) depends on this behavior. I
  don't know if this is a hardware restriction, or if the NDIS
  driver for this card is truncating the addresses itself, but using
  physical/bus addresses beyong the 1GB limit causes initialization
  failures.

- Create am NDIS_INITIALIZED() macro in if_ndisvar.h and use it in
  if_ndis.c to test whether the device has been initialized rather
  than checking for the presence of the IFF_UP flag in if_flags.
  While debugging the previous problem, I noticed that bringing
  up the device would always produce failures from ndis_setmulti().
  It turns out that the following steps now occur during device
  initialization:

	- IFF_UP flag is set in if_flags
	- ifp->if_ioctl() called with SIOCSIFADDR (which we don't handle)
	- ifp->if_ioctl() called with SIOCADDMULTI
	- ifp->if_ioctl() called with SIOCADDMULTI (again)
	- ifp->if_ioctl() called with SIOCADDMULTI (yet again)
	- ifp->if_ioctl() called with SIOCSIFFLAGS

  Setting the receive filter and multicast filters can only be done
  when the underlying NDIS driver has been initialized, which is done
  by ifp->if_init(). However, we don't call ifp->if_init() until
  ifp->if_ioctl() is called with SIOCSIFFLAGS and IFF_UP has been
  set. It appears that now, the network stack tries to add multicast
  addresses to interface's filter before those steps occur. Normally,
  ndis_setmulti() would trap this condition by checking for the IFF_UP
  flag, but the network code has in fact set this flag already, so
  ndis_setmulti() is fooled into thinking the interface has been
  initialized when it really hasn't.

  It turns out this is usually harmless because the ifp->if_init()
  routine (in this case ndis_init()) will set up the multicast
  filter when it initializes the hardware anyway, and the underlying
  routines (ndis_get_info()/ndis_set_info()) know that the driver/NIC
  haven't been initialized yet, but you end up spurious error messages
  on the console all the time.

Something tells me this new behavior isn't really correct. I think
the intention was to fix it so that ifp->if_init() is only called
once when we ifconfig an interface up, but the end result seems a
little bogus: the change of the IFF_UP flag should be propagated
down to the driver before calling any other ioctl() that might actually
require the hardware to be up and running.
2004-07-07 17:46:30 +00:00
wpaul
923c7351dd Add another 5.2.1 source compatibility tweak: acquire Giant before calling
kthread_exit() if FreeBSD_version is old enough.
2004-06-07 01:22:48 +00:00
des
95045d6bb3 Take advantage of the dev sysctl tree.
Approved by:	wpaul
2004-06-04 22:24:46 +00:00
wpaul
ea3e28a2d3 Grrr. Really check subr_ndis.c in this time. (fixed my_strcasecmp()) 2004-06-04 04:45:38 +00:00
wpaul
a4fd26fba2 Explicitly #include <sys/module.h> instead of depending on <sys/kernel.h>
to do it for us.
2004-06-01 23:24:17 +00:00
wpaul
24d0dec0e8 Fix build with ndisulator: Add prototype for my_strcasecmp(). 2004-05-29 22:34:08 +00:00
wpaul
86ad4bc572 In subr_ndis.c, when searching for keys in our make-pretend registry,
make the key name matching case-insensitive. There are some drivers
and .inf files that have mismatched cases, e.g. the driver will look
for "AdhocBand" whereas the .inf file specifies a registry key to be
created called "AdHocBand." The mismatch is probably a typo that went
undetected (so much for QA), but since Windows seems to be case-insensitive,
we should be too.

In if_ndis.c, initialize rates and channels correctly so that specify
frequences correctly when trying to set channels in the 5Ghz band, and
so that 802.11b rates show up for some a/b/g cards (which otherwise
appear to have no 802.11b modes).

Also, when setting OID_802_11_CONFIGURATION in ndis_80211_setstate(),
provide default values for the beacon interval, ATIM window and dwelltime.
The Atheros "Aries" driver will crash if you try to select ad-hoc mode
and leave the beacon interval set to 0: it blindly uses this value and
does a division by 0 in the interrupt handler, causing an integer
divide trap.
2004-05-29 06:41:17 +00:00
wpaul
a7f0f62fc0 Small timer cleanups:
- Use the dh_inserted member of the dispatch header in the Windows
  timer structure to indicate that the timer has been "inserted into
  the timer queue" (i.e. armed via timeout()). Use this as the value
  to return to the caller in KeCancelTimer(). Previously, I was using
  callout_pending(), but you can't use that with timeout()/untimeout()
  without creating a potential race condition.

- Make ntoskrnl_init_timer() just a wrapper around ntoskrnl_init_timer_ex()
  (reduces some code duplication).

- Drop Giant when entering if_ndis.c:ndis_tick() and
  subr_ntorkrnl.c:ntoskrnl_timercall(). At the moment, I'm forced to
  use system callwheel via timeout()/untimeout() to handle timers rather
  than the callout API (struct callout is too big to fit inside the
  Windows struct KTIMER, so I'm kind of hosed). Unfortunately, all
  the callouts in the callwhere are not marked as MPSAFE, so when
  one of them fires, it implicitly acquires Giant before invoking the
  callback routine (and releases it when it returns). I don't need to
  hold Giant, but there's no way to stop the callout code from acquiring
  it as long as I'm using timeout()/untimeout(), so for now we cheat
  by just dropping Giant right away (and re-acquiring it right before
  the routine returns so keep the callout code happy). At some point,
  I will need to solve this better, but for now this should be a suitable
  workaround.
2004-04-30 20:51:55 +00:00
wpaul
6bc1da1c05 Ok, _really_ fix the Intel 2100B Centrino deadlock problems this time.
(I hope.)

My original instinct to make ndis_return_packet() asynchronous was correct.
Making ndis_rxeof() submit packets to the stack asynchronously fixes
one recursive spinlock acquisition, but it's also possible for it to
happen via the ndis_txeof() path too. So:

- In if_ndis.c, revert ndis_rxeof() to its old behavior (and don't bother
  putting ndis_rxeof_serial() back since we don't need it anymore).

- In kern_ndis.c, make ndis_return_packet() submit the call to the
  MiniportReturnPacket() function to the "ndis swi" thread so that
  it always happens in another context no matter who calls it.
2004-04-22 07:08:39 +00:00
wpaul
d1e72fc336 Correct the AT_DISPATCH_LEVEL() macro to match earlier changes. 2004-04-20 02:27:38 +00:00
wpaul
b40a64ce55 Try to handle recursive attempts to raise IRQL to DISPATCH_LEVEL better
(among other things).
2004-04-19 22:39:04 +00:00
wpaul
a98d8ced54 In ntoskrnl_unlock_dpc(), use atomic_store instead of atomic_cmpset
to give up the spinlock.

Suggested by: bde
2004-04-18 18:38:59 +00:00
wpaul
1ea56deba6 - Use memory barrier with atomic operations in ntoskrnl_lock_dpc() and
ntoskrnl_unlocl_dpc().
- hal_raise_irql(), hal_lower_irql() and hal_irql() didn't work right
  on SMP (priority inheritance makes things... interesting). For now,
  use only two states: DISPATCH_LEVEL (PI_REALTIME) and PASSIVE_LEVEL
  (everything else). Tested on a dual PIII box.
- Use ndis_thsuspend() in ndis_sleep() instead of tsleep(). (I added
  ndis_thsuspend() and ndis_thresume() to replace kthread_suspend()
  and kthread_resume(); the former will preserve a thread's priority
  when it wakes up, the latter will not.)
- Change use of tsleep() in ndis_stop_thread() to prevent priority
  change on wakeup.
2004-04-16 00:04:28 +00:00
wpaul
9765d24df6 Continue my efforts to imitate Windows as closely as possible by
attempting to duplicate Windows spinlocks. Windows spinlocks differ
from FreeBSD spinlocks in the way they block preemption. FreeBSD
spinlocks use critical_enter(), which masks off _all_ interrupts.
This prevents any other threads from being scheduled, but it also
prevents ISRs from running. In Windows, preemption is achieved by
raising the processor IRQL to DISPATCH_LEVEL, which prevents other
threads from preempting you, but does _not_ prevent device ISRs
from running. (This is essentially what Solaris calls dispatcher
locks.) The Windows spinlock itself (kspin_lock) is just an integer
value which is atomically set when you acquire the lock and atomically
cleared when you release it.

FreeBSD doesn't have IRQ levels, so we have to cheat a little by
using thread priorities: normal thread priority is PASSIVE_LEVEL,
lowest interrupt thread priority is DISPATCH_LEVEL, highest thread
priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is
HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL
matter to us. The immediate benefit of all this is that I no
longer have to rely on a mutex pool.

Now, I'm sure many people will be seized by the urge to criticize
me for doing an end run around our own spinlock implementation, but
it makes more sense to do it this way. Well, it does to me anyway.

Overview of the changes:

- Properly implement hal_lock(), hal_unlock(), hal_irql(),
  hal_raise_irql() and hal_lower_irql() so that they more closely
  resemble their Windows counterparts. The IRQL is determined by
  thread priority.

- Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do
  in Windows, which is to atomically set/clear the lock value. These
  routines are designed to be called from DISPATCH_LEVEL, and are
  actually half of the work involved in acquiring/releasing spinlocks.

- Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers
  that allow us to call a _fastcall function in spite of the fact
  that our version of gcc doesn't support __attribute__((__fastcall__))
  yet. The macros take 1, 2 or 3 arguments, respectively. We need
  to call hal_lock(), hal_unlock() etc... ourselves, but can't really
  invoke the function directly. I could have just made the underlying
  functions native routines and put _fastcall wrappers around them for
  the benefit of Windows binaries, but that would create needless bloat.

- Remove ndis_mtxpool and all references to it. We don't need it
  anymore.

- Re-implement the NdisSpinLock routines so that they use hal_lock()
  and friends like they do in Windows.

- Use the new spinlock methods for handling lookaside lists and
  linked list updates in place of the mutex locks that were there
  before.

- Remove mutex locking from ndis_isr() and ndis_intrhand() since they're
  already called with ndis_intrmtx held in if_ndis.c.

- Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif.
  It turns out there are some drivers which stupidly free the memory
  in which their spinlocks reside before calling ndis_destroy_lock()
  on them (touch-after-free bug). The ADMtek wireless driver
  is guilty of this faux pas. (Why this doesn't clobber Windows I
  have no idea.)

- Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into
  real functions instead of aliasing them to NdisAcaquireSpinLock()
  and NdisReleaseSpinLock(). The Dpr routines use
  KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(),
  which acquires the lock without twiddling the IRQL.

- In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some
  drivers may call the status/status done callbacks as the result of
  setting an OID: ndis_80211_getstate() gets OIDs, which means we
  might cause the driver to recursively access some of its internal
  structures unexpectedly. The ndis_ticktask() routine will call
  ndis_80211_getstate() for us eventually anyway.

- Fix the channel setting code a little in ndis_80211_setstate(),
  and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft
  spec says you're not supposed to twiddle the channel in BSS mode;
  I may need to enforce this later.) This fixes the problems I was
  having with the ADMtek adm8211 driver: we were setting the channel
  to a non-standard default, which would cause it to fail to associate
  in BSS mode.

- Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when
  calling certain miniport routines, per the Microsoft documentation.

I think that's everything. Hopefully, other than fixing the ADMtek
driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
wpaul
52d50449a1 In ndis_convert_res(), initialize the head of our temporary list
before calling BUS_GET_RESOURCE_LIST(). Previously, the list head would
only be initialized if BUS_GET_RESOURCE_LIST() succeeded; it needs to
be initialized unconditionally so that the list cleanup code won't
trip over potential stack garbage.
2004-04-07 17:02:55 +00:00
wpaul
e8bf917ce6 - The MiniportReset() function can return NDIS_STATUS_PENDING, in which
case we should wait for the resetdone handler to be called before
  returning.

- When providing resources via ndis_query_resources(), uses the
  computed rsclen when using bcopy() to copy out the resource data
  rather than the caller-supplied buffer length.

- Avoid using ndis_reset_nic() in if_ndis.c unless we really need
  to reset the NIC because of a problem.

- Allow interrupts to be fielded during ndis_attach(), at least
  as far as allowing ndis_isr() and ndis_intrhand() to run.

- Use ndis_80211_rates_ex when probing for supported rates. Technically,
  this isn't supposed to work since, although Microsoft added the extended
  rate structure with the NDIS 5.1 update, the spec still says that
  the OID_802_11_SUPPORTED_RATES OID uses ndis_80211_rates. In spite of
  this, it appears some drivers use it anyway.

- When adding in our guessed rates, check to see if they already exist
  so that we avoid any duplicates.

- Add a printf() to ndis_open_file() that alerts the user when a
  driver attempts to open a file under /compat/ndis.

With these changes, I can get the driver for the SMC 2802W 54g PCI
card to load and run. This board uses a Prism54G chip. Note that in
order for this driver to work, you must place the supplied smc2802w.arm
firmware image under /compat/ndis. (The firmware is not resident on
the device.)

Note that this should also allow the 3Com 3CRWE154G72 card to work
as well; as far as I can tell, these cards also use a Prism54G chip.
2004-04-05 08:26:52 +00:00
wpaul
163b236504 Add missing cprd_flags member to partial resource structure in
resource_var.h.

In kern_ndis.c:ndis_convert_res(), fill in the cprd_flags and
cprd_sharedisp fields as best we can.

In if_ndis.c:ndis_setmulti(), don't bother updating the multicast
filter if our multicast address list is empty.

Add some missing updates to ndis_var.h and ntoskrnl_var.h that I
forgot to check in when I added the KeDpc stuff.
2004-03-29 02:15:29 +00:00
wpaul
b41d925167 Apparently, some atheros drivers want rand(), so implement it (in terms
of random()).

Requested by: juli
Bribe offered: tacos
2004-03-27 20:38:43 +00:00
wpaul
2c5e07e637 - In subr_ndis.c:ndis_init_event(), initialize events as notification
objects rather than synchronization objects. When a sync object is
  signaled, only the first thread waiting on it is woken up, and then
  it's automatically reset to the not-signaled state. When a
  notification object is signaled, all threads waiting on it will
  be woken up, and it remains in the signaled state until someone
  resets it manually. We want the latter behavior for NDIS events.

- In kern_ndis.c:ndis_convert_res(), we have to create a temporary
  copy of the list returned by BUS_GET_RESOURCE_LIST(). When the PCI
  bus code probes resources for a given device, it enters them into
  a singly linked list, head first. The result is that traversing
  this list gives you the resources in reverse order. This means when
  we create the Windows resource list, it will be in reverse order too.
  Unfortunately, this can hose drivers for devices with multiple I/O
  ranges of the same type, like, say, two memory mapped I/O regions (one
  for registers, one to map the NVRAM/bootrom/whatever). Some drivers
  test the range size to figure out which region is which, but others
  just assume that the resources will be listed in ascending order from
  lowest numbered BAR to highest. Reversing the order means such drivers
  will choose the wrong resource as their I/O register range.

  Since we can't traverse the resource SLIST backwards, we have to
  make a temporary copy of the list in the right order and then build
  the Windows resource list from that. I suppose we could just fix
  the PCI bus code to use a TAILQ instead, but then I'd have to track
  down all the consumers of the BUS_GET_RESOURCE_LIST() and fix them
  too.
2004-03-25 18:31:52 +00:00
wpaul
57efe0d11e - In kern_ndis.c, implement ndis_unsched(), the complement to ndis_sched(),
which pulls a job off a thread work queue (assuming it hasn't run yet).
  This is needed for KeRemoveQueueDpc().

- In subr_ntoskrnl.c, implement KeInsertQueueDpc() and KeRemoveQueueDpc(),
  to go with KeInitializeDpc() to round out the API. Also change the
  KeTimer implementation to use this API instead of the private
  timer callout scheduler. Functionality of the timer API remains
  unchanged, but we get a couple new Windows kernel API routines and
  more closely imitate the way thing works in Windows. (As of yet
  I haven't encountered any drivers that use KeInsertQueueDpc() or
  KeRemoveQueueDpc(), but it doesn't hurt to have them.)
2004-03-25 08:23:08 +00:00
wpaul
0cae7408dd Remove another case of grabbing Giant before doing a kthread_exit()
which is now no longer needed.
2004-03-22 22:46:22 +00:00
wpaul
531ac9bc54 I'm a dumbass: the test in the MOD_SHUTDOWN case in ndis_modevent()
that checks to see if any devices are still in the devlist was reversed.
2004-03-22 18:34:37 +00:00
wpaul
e7b058478d The Intel 2200BG NDIS driver does an alloca() of about 5000 bytes
when it associates with a net. Because FreeBSD's kstack size is only
2 pages by default, this blows the stack and causes a double fault.

To deal with this, we now create all our kthreads with 8 stack pages.
Also, we now run all timer callouts in the ndis swi thread (since
they would otherwise run in the clock ithread, whose stack is too
small). It happens that the alloca() in this case was occuring within
the interrupt handler, which was already running in the ndis swi
thread, but I want to deal with the callouts too just to be extra
safe.

NOTE: this will only work if you update vm_machdep.c with the change
I just committed. If you don't include this fix, setting the number
of stack pages with kthread_create() has essentially no effect.
2004-03-22 00:41:41 +00:00
wpaul
8feaa1f450 - Rewrite the timer and event API routines in subr_ndis.c so that they
are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just
  as it is in Windows. This reduces code duplication and more closely
  imitates the way things are done in Windows.

- Modify ndis_encode_parm() to deal with the case where we have
  a registry key expressed as a hex value ("0x1") which is being
  read via NdisReadConfiguration() as an int. Previously, we tried
  to decode things like "0x1" with strtol() using a base of 10, which
  would always yield 0. This is what was causing problems with the
  Intel 2200BG Centrino 802.11g driver: the .inf file that comes
  with it has a key called RadioEnable with a value of 0x1. We
  incorrectly decoded this value to '0' when it was queried, hence
  the driver thought we wanted the radio turned off.

- In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO,
  but NDIS_80211_AUTHMODE_SHARED may not be right in some cases,
  so for now always use NDIS_80211_AUTHMODE_OPEN.

NOTE: There is still one problem with the Intel 2200BG driver: it
happens that the kernel stack in Windows is larger than the kernel
stack in FreeBSD. The 2200BG driver sometimes eats up more than 2
pages of stack space, which can lead to a double fault panic.
For the moment, I got things to work by adding the following to
my kernel config file:

options         KSTACK_PAGES=8

I'm pretty sure 8 is too big; I just picked this value out of a hat
as a test, and it happened to work, so I left it. 4 pages might be
enough. Unfortunately, I don't think you can dynamically give a
thread a larger stack, so I'm not sure how to handle this short of
putting a note in the man page about it and dealing with the flood
of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
wpaul
5aa1390e61 Add vectors for _snprintf() and _vsnprintf() (redirected straight to
snprintf() and vsnprintf() in FreeBSD kernel land).

This is needed by the Intel Centrino 2200BG driver. Unfortunately, this
driver still doesn't work right with Project Evil even with this tweak,
but I'm unable to diagnose the problem since I don't have access to a
sample card.
2004-03-15 16:39:03 +00:00