rather than forcing the state to LOOK. If we are in the middle of parsing
a line when we have to do a FILL we would have lost any token we were in
the middle of parsing and would have treated the next character as being
at the start of a new line instead.
PR: kern/89181
Submitted by: Antony Mawer gnats at mawer dot org
MFC after: 1 week
Instead of echoing the code in a comment, try to describe why we split
up the evaluation in a special way.
The new optimization is mostly to move the evaluation of w = z*z later
so that everything else (except z = x*x) doesn't have to wait for w.
On Athlons, FP multiplication has a latency of 4 cycles so this
optimization saves 4 cycles per call provided no new dependencies are
introduced. Tweaking the other terms in to reduce dependencies saves
a couple more cycles in some cases (more on AXP than on A64; up to 8
cycles out of 56 altogether in some cases). The previous version had
a similar optimization for s = z*x. Special optimizations like these
probably have a larger effect than the simple 2-way vectorization
permitted (but not activated by gcc) in the old version, since 2-way
vectorization is not enough and the polynomial's degree is so small
in the float case that non-vectorizable dependencies dominate.
On an AXP, tanf() on uniformly distributed args in [-2pi, 2pi] now
takes 34-55 cycles (was 39-59 cycles).
of between 1.0 and 1.8509 ulps for lgammaf(x) with x between -2**-21 and
-2**-70.
As usual, the cutoff for tiny args was not correctly translated to
float precision. It was 2**-70 but 2**-21 works. Not as usual, having
a too-small threshold was worse than a pessimization. It was just a
pessimization for (positive) args between 2**-70 and 2**-21, but for
the first ~50 million (negative) args below -2**-70, the general code
overflowed and gave a result of infinity instead of correct (finite)
results near 70*log(2). For the remaining ~361 million negative args
above -2**21, the general code gave almost-acceptable errors (lgamma[f]()
is not very accurate in general) but the pessimization was larger than
for misclassified tiny positive args.
Now the max error for lgammaf(x) with |x| < 2**-21 is 0.7885 ulps, and
speed and accuracy are almost the same for positive and negative args
in this range. The maximum error overall is still infinity ulps.
A cutoff of 2**-70 is probably wastefully small for the double precision
case. Smaller cutoffs can be used to reduce the max error to nearly
0.5 ulps for tiny args, but this is useless since the general algrorithm
for nearly-tiny args is not nearly that accurate -- it has a max error of
about 1 ulp.
gives a tiny but hopefully always free optimization in the 2 quadrants
to which it applies. On Athlons, it reduces maximum latency by 4 cycles
in these quadrants but has usually has a smaller effect on total time
(typically ~2 cycles (~5%), but sometimes 8 cycles when the compiler
generates poor code).
of the function name.
Added my (non-)copyright.
In k_tanf.c, added the first set of redundant parentheses to control
grouping which was claimed to be added in the previous commit.
returning float). The functions are renamed from __kernel_{cos,sin}f()
to __kernel_{cos,sin}df() so that misuses of them will cause link errors
and not crashes.
This version is an almost-routine translation with no special optimizations
for accuracy or efficiency. The not-quite-routine part is that in
__kernel_cosf(), regenerating the minimax polynomial with double
precision coefficients gives a coefficient for the x**2 term that is
not quite -0.5, so the literal 0.5 in the code and the related `hz'
variable need to be modified; also, the special code for reducing the
error in 1.0-x**2*0.5 is no longer needed, so it is convenient to
adjust all the logic for the x**2 term a little. Note that without
extra precision, it would be very bad to use a coefficient of other
than -0.5 for the x**2 term -- the old version depends on multiplication
by -0.5 being infinitely precise so as not to need even more special
code for reducing the error in 1-x**2*0.5.
This gives an unimportant increase in accuracy, from ~0.8 to ~0.501
ulps. Almost all of the error is from the final rounding step, since
the choice of the minimax polynomials so that their contribution to the
error is a bit less than 0.5 ulps just happens to give contributions that
are significantly less (~.001 ulps).
An Athlons, for uniformly distributed args in [-2pi, 2pi], this gives
overall speed increases in the 10-20% range, despite giving a speed
decrease of typically 19% (from 31 cycles up to 37) for sinf() on args
in [-pi/4, pi/4].
libarchive doesn't make malloc(0) requests, so the autoconf
checks aren't needed and the autoconf workarounds for
broken malloc(0) just create problems.
Thanks to: Dan Nelson, who reports that this fixes libarchive on AIX 5.2
- Remove dead code that I forgot to remove in the previous commit.
- Calculate the sum of the lower terms of the polynomial (divided by
x**5) in a single expression (sum of odd terms) + (sum of even terms)
with parentheses to control grouping. This is clearer and happens to
give better instruction scheduling for a tiny optimization (an
average of about ~0.5 cycles/call on Athlons).
- Calculate the final sum in a single expression with parentheses to
control grouping too. Change the grouping from
first_term + (second_term + sum_of_lower_terms) to
(first_term + second_term) + sum_of_lower_terms. Normally the first
grouping must be used for accuracy, but extra precision makes any
grouping give a correct result so we can group for efficiency. This
is a larger optimization (average 3-4 cycles/call or 5%).
- Use parentheses to indicate that the C order of left to right evaluation
is what is wanted (for efficiency) in a multiplication too.
The old fdlibm code has several optimizations related to these. 2
involve doing an extra operation that can be done almost in parallel
on some superscalar machines but are pessimizations on sequential
machines. Others involve statement ordering or expression grouping.
All of these except the ordering for the combining the sums of the odd
and even terms seem to be ideal for Athlons, but parallelism is still
limited so all of these optimizations combined together with the ones
in this commit save only ~6-8 cycles (~10%).
On an AXP, tanf() on uniformly distributed args in [-2pi, 2pi] now
takes 39-59 cycles. I don't know of any more optimizations for tanf()
short of writing it all in asm with very MD instruction scheduling.
Hardware fsin takes 122-138 cycles. Most of the optimizations for
tanf() don't work very well for tan[l](). fdlibm tan() now takes
145-365 cycles.
A single polynomial approximation for tan(x) works in infinite precision
up to |x| < pi/2, but in finite precision, to restrict the accumulated
roundoff error to < 1 ulp, |x| must be restricted to less than about
sqrt(0.5/((1.5+1.5)/3)) ~= 0.707. We restricted it a bit more to
give a safety margin including some slop for optimizations. Now that
we use double precision for the calculations, the accumulated roundoff
error is in double-precision ulps so it can easily be made almost 2**29
times smaller than a single-precision ulp. Near x = pi/4 its maximum
is about 0.5+(1.5+1.5)*x**2/3 ~= 1.117 double-precision ulps.
The minimax polynomial needs to be different to work for the larger
interval. I didn't increase its degree the old degree is just large
enough to keep the final error less than 1 ulp and increasing the
degree would be a pessimization. The maximum error is now ~0.80
ulps instead of ~0.53 ulps.
The speedup from this optimization for uniformly distributed args in
[-2pi, 2pi] is 28-43% on athlons, depending on how badly gcc selected
and scheduled the instructions in the old version. The old version
has some int-to-float conversions that are apparently difficult to schedule
well, but gcc-3.3 somehow did everything ~10 cycles or ~10% faster than
gcc-3.4, with the difference especially large on AXPs. On A64s, the
problem seems to be related to documented penalties for moving single
precision data to undead xmm registers. With this version, the speed
is cycles is almost independent of the athlon and gcc version despite
the large differences in instruction selection to use the FPU on AXPs
and SSE on A64s.
This is a minor interface change. The function is renamed from
__kernel_tanf() to __kernel_tandf() so that misues of it will cause
link errors and not crashes.
This version is a routine translation with no special optimizations
for accuracy or efficiency. It gives an unimportant increase in
accuracy, from ~0.9 ulps to 0.5285 ulps. Almost all of the error is
from the minimax polynomial (~0.03 ulps and the final rounding step
(< 0.5 ulps). It gives strange differences in efficiency in the -5
to +10% range, with -O1 fairly consistently becoming faster and -O2
slower on AXP and A64 with gcc-3.3 and gcc-3.4.
arg to __kernel_rem_pio2() gives 53-bit (double) precision, not single
precision and/or the array dimension like I thought. prec == 2 is
used in e_rem_pio2.c for double precision although it is documented
to be for 64-bit (extended) precision, and I just reduced it by 1
thinking that this would give the value suitable for 24-bit (float)
precision. Reducing it 1 more to the documented value for float
precision doesn't actually work (it gives errors of ~0.75 ulps in the
reduced arg, but errors of much less than 0.5 ulps are needed; the bug
seems to be in kernel_rem_pio2.c). Keep using a value 1 larger than
the documented value but supply an array large enough hold the extra
unused result from this.
The bug can also be fixed quickly by increasing init_jk[0] in
k_rem_pio2.c from 2 to 3. This gives behaviour identical to using
prec == 1 except it doesn't create the extra result. It isn't clear
how the precision bug affects higher precisions. 113-bit (quad) is
the largest precision, so there is no way to use a large precision
to fix it.
they can be #included in other .c files to give inline functions, and
use them to inline the functions in most callers (not in e_lgammaf_r.c).
__kernel_tanf() is too large and complicated for gcc to inline very well.
An athlons, this gives a speed increase under favourable pipeline
conditions of about 10% overall (larger for AXP, smaller for A64).
E.g., on AXP, sinf() on uniformly distributed args in [-2Pi, 2Pi]
now takes 30-56 cycles; it used to take 45-61 cycles; hardware fsin
takes 65-129.
On athlons, this gives a speedup of 10-20% for tanf() on uniformly
distributed args in [-2Pi, 2Pi]. (It only directly applies for 43%
of the args and gives a 16-20% speedup for these (more for AXP than
A64) and this gives an overall speedup of 10-12% which is all that it
should; however, it gives an overall speedup of 17-20% with gcc-3.3
on AXP-A64 by mysteriously effected cases where it isn't executed.)
I originally intended to use double precision for all internals of
float trig functions and will probably still do this, but benchmarking
showed that converting to double precision and back is a pessimization
in cases where a simple float precision calculation works, so it may
be optimal to switch precisions only when using extra precision is
much simpler.
__ieee754_rem_pio2f() to its 3 callers and manually inline them.
On Athlons, with favourable compiler flags and optimizations and
favourable pipeline conditions, this gives a speedup of 30-40 cycles
for cosf(), sinf() and tanf() on the range pi/4 < |x| <= 9pi/4, so
thes functions are now signifcantly faster than the hardware trig
functions in many cases. E.g., in a benchmark with uniformly distributed
x in [-2pi, 2pi], A64 hardware fcos took 72-129 cycles and cosf() took
37-55 cycles. Out-of-order execution is needed to get both of these
times. The optimizations in this commit apparently work more by
removing 1 serialization point than by reducing latency.
s_cosf.c and s_sinf.c:
Use a non-bogus magic constant for the threshold of pi/4. It was 2 ulps
smaller than pi/4 rounded down, but its value is not critical so it should
be the result of natural rounding.
s_cosf.c and s_tanf.c:
Use a literal 0.0 instead of an unnecessary variable initialized to
[(float)]0.0. Let the function prototype convert to 0.0F.
Improved wording in some comments.
Attempted to improve indentation of comments.
number of branches.
Use a non-bogus magic constant for the threshold of pi/4. It was 2 ulps
smaller than pi/4 rounded down, but its value is not critical so it should
be the result of natural rounding. Use "<=" comparisons with rounded-
down thresholds for all small multiples of pi/4.
Cleaned up previous commit:
- use static const variables instead of expressions for multiples of pi/2
to ensure that they are evaluated at compile time. gcc currently
evaluates them at compile time but C99 compilers are not required
to do so. We want compile time evaluation for optimization and don't
care about side effects.
- use M_PI_2 instead of a magic constant for pi/2. We need magic constants
related to pi/2 elsewhere but not here since we just want pi/2 rounded
to double and even prefer it to be rounded in the default rounding mode.
We can depend on the cmpiler being C99ish enough to round M_PI_2 correctly
just as much as we depended on it handling hex constants correctly. This
also fixes a harmless rounding error in the hex constant.
- keep using expressions n*<value for pi/2> in the initializers for the
static const variables. 2*M_PI_2 and 4*M_PI_2 are obviously rounded in
the same way as the corresponding infinite precision expressions for
multiples of pi/2, and 3*M_PI_2 happens to be rounded like this, so we
don't need magic constants for the multiples.
- fixed and/or updated some comments.
define also, but res_config.h was not included into libc/net/name6.c.
So getipnodebyaddr() ignored the multiple PTRs.
PR: kern/88241
Submitted by: Dan Lukes <dan__at__obluda.cz>
MFC after: 3 days
The threshold for not being tiny was too small. Use the usual 2**-12
threshold. This change is not just an optimization, since the general
code that we fell into has accuracy problems even for tiny x. Avoiding
it fixes 2*1366 args with errors of more than 1 ulp, with a maximum
error of 1.167 ulps.
The magic number 22 is log(DBL_EPSILON)/2 plus slop. This is bogus
for float precision. Use 9 (~log(FLT_EPSILON)/2 plus less slop than
for double precision). The code for handling the interval
[2**-28, 9_was_22] has accuracy problems even for [9, 22], so this
change happens to fix errors of more than 1 ulp in about 2*17000
cases. It leaves such errors in about 2*1074000 cases, with a max
error of 1.242 ulps.
The threshold for switching from returning exp(x)/2 to returning
exp(x/2)^2/2 was a little smaller than necessary. As for coshf(),
This was not quite harmless since the exp(x/2)^2/2 case is inaccurate,
and fixing it avoids accuracy problems in 2*6 cases, leaving problems
in 2*19997 cases.
Fixed naming errors in pseudo-code in comments.
The threshold for not being tiny was confusing and too small. Use the
usual 2**-12 threshold and simplify the algorithm slightly so that
this threshold works (now use the threshold for sinhf() instead of one
for 1+expm1()). This is just a small optimization.
The magic number 22 is log(DBL_EPSILON)/2 plus slop. This is bogus
for float precision. Use 9 (~log(FLT_EPSILON)/2 plus less slop than
for double precision).
The threshold for switching from returning exp(x)/2 to returning
exp(x/2)^2/2 was a little smaller than necessary. This was not quite
harmless since the exp(x/2)^2/2 case is inaccurate. Fixing it happens
to avoid accuracy problems for 2*6 of the 2*151 args that were handled
by the exp(x)/2 case. This leaves accuracy problems for about 2*19997
args near the overflow threshold (~89); the maximum error there is
2.5029 ulps.
There are also accuracy probles for args in +-[0.5*ln2, 9] -- 2*188885
args with errors of more than 1 ulp, with a maximum error of 1.384 ulps.
Fixed a syntax error and naming errors in pseudo-code in comments.
specialized for float precision. The new polynomial has degree 8
instead of 14, and a maximum error of 2**-34.34 (absolute) instead of
2**-30.66. This doesn't affect the final error significantly; the
maximum error was and is about 0.8879 ulps on amd64 -01.
The fdlibm expf() is not used on i386's (the "optimized" asm version
is used), but probably should be since it was already significantly
faster than the asm version on athlons. The asm version has the
advantage of being more accurate, so keep using it for now.
polynomial for __kernel_tanf(). The old one was the double-precision
polynomial with coefficients truncated to float. Truncation is not
a good way to convert minimax polynomials to lower precision. Optimize
for efficiency and use the lowest-degree polynomial that gives a
relative error of less than 1 ulp. It has degree 13 instead of 27,
and happens to be 2.5 times more accurate (in infinite precision) than
the old polynomial (the maximum error is 0.017 ulps instead of 0.041
ulps).
Unlike for cosf and sinf, the old accuracy was close to being inadequate
-- the polynomial for double precision has a max error of 0.014 ulps
and nearly this small an error is needed. The new accuracy is also a
bit small, but exhaustive checking shows that even the old accuracy
was enough. The increased accuracy reduces the maximum relative error
in the final result on amd64 -O1 from 0.9588 ulps to 0.9044 ulps.
special case pi/4 <= |x| < 3*pi/4. This gives a tiny optimization (it
saves 2 subtractions, which are scheduled well so they take a whole 1
cycle extra on an AthlonXP), and simplifies the code so that the
following optimization is not so ugly.
Optimize for the range 3*pi/4 < |x| < 9*Pi/2 in the same way. On
Athlon{XP,64} systems, this gives a 25-40% optimization (depending a
lot on CFLAGS) for the cosf() and sinf() consumers on this range.
Relative to i387 hardware fcos and fsin, it makes the software versions
faster in most cases instead of slower in most cases. The relative
optimization is smaller for tanf() the inefficient part is elsewhere.
The 53-bit approximation to pi/2 is good enough for pi/4 <= |x| <
3*pi/4 because after losing up to 24 bits to subtraction, we still
have 29 bits of precision and only need 25 bits. Even with only 5
extra bits, it is possible to get perfectly rounded results starting
with the reduced x, since if x is nearly a multiple of pi/2 then x is
not near a half-way case and if x is not nearly a multiple of pi/2
then we don't lose many bits. With our intentionally imperfect rounding
we get the same results for cosf(), sinf() and tanf() as without this
optimization.
standard in C99 and POSIX.1-2001+. They are also not deprecated, since
apart from being standard they can handle special args slightly better
than the ilogb() functions.
Move their documentation to ilogb.3. Try to use consistent and improved
wording for both sets of functions. All of ieee854, C99 and POSIX
have better wording and more details for special args.
Add history for the logb() functions and ilogbl(). Fix history for
ilogb().
so that it can be faster for tiny x and avoided for reduced x.
This improves things a little differently than for cosine and sine.
We still need to reclassify x in the "kernel" functions, but we get
an extra optimization for tiny x, and an overall optimization since
tiny reduced x rarely happens. We also get optimizations for space
and style. A large block of poorly duplicated code to fix a special
case is no longer needed. This supersedes the fixes in k_sin.c revs
1.9 and 1.11 and k_sinf.c 1.8 and 1.10.
Fixed wrong constant for the cutoff for "tiny" in tanf(). It was
2**-28, but should be almost the same as the cutoff in sinf() (2**-12).
The incorrect cutoff protected us from the bugs fixed in k_sinf.c 1.8
and 1.10, except 4 cases of reduced args passed the cutoff and needed
special handling in theory although not in practice. Now we essentially
use a cutoff of 0 for the case of reduced args, so we now have 0 special
args instead of 4.
This change makes no difference to the results for sinf() (since it
only changes the algorithm for the 4 special args and the results for
those happen not to change), but it changes lots of results for sin().
Exhaustive testing is impossible for sin(), but exhaustive testing
for sinf() (relative to a version with the old algorithm and a fixed
cutoff) shows that the changes in the error are either reductions or
from 0.5-epsilon ulps to 0.5+epsilon ulps. The new method just uses
some extra terms in approximations so it tends to give more accurate
results, and there are apparently no problems from having extra
accuracy. On amd64 with -O1, on all float args the error range in ulps
is reduced from (0.500, 0.665] to [0.335, 0.500) in 24168 cases and
increased from 0.500-epsilon to 0.500+epsilon in 24 cases. Non-
exhaustive testing by ucbtest shows no differences.
commit moved it). This includes a comment that the "kernel" sine no
longer works on arg -0, so callers must now handle this case. The kernel
sine still works on all other tiny args; without the optimization it is
just a little slower on these args. I intended it to keep working on
all tiny args, but that seems to be impossible without losing efficiency
or accuracy. (sin(x) ~ x * (1 + S1*x**2 + ...) would preserve -0, but
the approximation must be written as x + S1*x**3 + ... for accuracy.)
case never occurs since pi/2 is irrational so no multiple of it can
be represented as a float and we have precise arg reduction so we never
end up with a remainder of 0 in the "kernel" function unless the
original arg is 0.
If this case occurs, then we would now fall through to general code
that returns +-Inf (depending on the sign of the reduced arg) instead
of forcing +Inf. The correct handling would be to return NaN since
we would have lost so much precision that the correct result can be
anything _except_ +-Inf.
Don't reindent the else clause left over from this, although it was already
bogusly indented ("if (foo) return; else ..." just marches the indentation
to the right), since it will be removed too.
Index: k_tan.c
===================================================================
RCS file: /home/ncvs/src/lib/msun/src/k_tan.c,v
retrieving revision 1.10
diff -r1.10 k_tan.c
88,90c88
< if (((ix | low) | (iy + 1)) == 0)
< return one / fabs(x);
< else {
---
> {
a declaration was not translated to "float" although bit fiddling on
double variables was translated. This resulted in garbage being put
into the low word of one of the doubles instead of non-garbage being
put into the only word of the intended float. This had no effect on
any result because:
- with doubles, the algorithm for calculating -1/(x+y) is unnecessarily
complicated. Just returning -1/((double)x+y) would work, and the
misdeclaration gave something like that except for messing up some
low bits with the bit fiddling.
- doubles have plenty of bits to spare so messing up some of the low
bits is unlikely to matter.
- due to other bugs, the buggy code is reached for a whole 4 args out
of all 2**32 float args. The bug fixed by 1.8 only affects a small
percentage of cases and a small percentage of 4 is 0. The 4 args
happen to cause no problems without 1.8, so they are even less likely
to be affected by the bug in 1.8 than average args; in fact, neither
1.8 nor this commit makes any difference to the result for these 4
args (and thus for all args).
Corrections to the log message in 1.8: the bug only applies to tan()
and not tanf(), not because the float type can't represent numbers
large enough to trigger the problem (e.g., the example in the fdlibm-5.3
readme which is > 1.0e269), but because:
- the float type can't represent small enough numbers. For there to be
a possible problem, the original arg for tanf() must lie very near an
odd multiple of pi/2. Doubles can get nearer in absolute units. In
ulps there should be little difference, but ...
- ... the cutoff for "small" numbers is bogus in k_tanf.c. It is still
the double value (2**-28). Since this is 32 times smaller than
FLT_EPSILON and large float values are not very uniformly distributed,
only 6 args other than ones that are initially below the cutoff give
a reduced arg that passes the cutoff (the 4 problem cases mentioned
above and 2 non-problem cases).
Fixing the cutoff makes the bug affect tanf() and much easier to detect
than for tan(). With a cutoff of 2**-12 on amd64 with -O1, 670102
args pass the cutoff; of these, there are 337604 cases where there
might be an error of >= 1 ulp and 5826 cases where there is such an
error; the maximum error is 1.5382 ulps.
The fix in 1.8 works with the reduced cutoff in all cases despite the
bug in it. It changes the result in 84492 cases altogether to fix the
5826 broken cases. Fixing the fix by translating "double" to "float"
changes the result in 42 cases relative to 1.8. In 24 cases the
(absolute) error is increased and in 18 cases it is reduced, but it
remains less than 1 ulp in all cases.
rewritten, now timers created with same sigev_notify_attributes will
run in same thread, this allows user to organize which timers can
run in same thread to save some thread resource.