- entirely eliminate some calls to uio_yeild() as being unnecessary,
such as in a sysctl handler.
- move should_yield() and maybe_yield() to kern_synch.c and move the
prototypes from sys/uio.h to sys/proc.h
- add a slightly more generic kern_yield() that can replace the
functionality of uio_yield().
- replace source uses of uio_yield() with the functional equivalent,
or in some cases do not change the thread priority when switching.
- fix a logic inversion bug in vlrureclaim(), pointed out by bde@.
- instead of using the per-cpu last switched ticks, use a per thread
variable for should_yield(). With PREEMPTION, the only reasonable
use of this is to determine if a lock has been held a long time and
relinquish it. Without PREEMPTION, this is essentially the same as
the per-cpu variable.
PCATCH, to indicate that thread shall not be stopped upon receipt of
SIGSTOP until it reaches the kernel->usermode boundary.
Also change thread_single(SINGLE_NO_EXIT) to only stop threads at
the user boundary unconditionally.
Tested by: pho
Reviewed by: jhb
Approved by: re (kensmith)
kern_time.c:
- Unused variable `p'.
kern_thr.c:
- Variable `error' is always caught immediately, so no reason to
initialize it. There is no way that error != 0 at the end of
create_thread().
kern_sig.c:
- Unused variable `code'.
kern_synch.c:
- `rval' is always assigned in all different cases.
kern_rwlock.c:
- `v' is always overwritten with RW_UNLOCKED further on.
kern_malloc.c:
- `size' is always initialized with the proper value before being used.
kern_exit.c:
- `error' is always caught and returned immediately. abort2() never
returns a non-zero value.
kern_exec.c:
- `len' is always assigned inside the if-statement right below it.
tty_info.c:
- `td' is always overwritten by FOREACH_THREAD_IN_PROC().
Found by: LLVM's scan-build
with src/tools/sched/schedgraph.py. This allows developers to quickly
create a graphical view of ktr data for any resource in the system.
- Add sched_tdname() and the pcpu field 'name' for quickly and uniformly
identifying records associated with a thread or cpu.
- Reimplement the KTR_SCHED traces using the new generic facility.
Obtained from: attilio
Discussed with: jhb
Sponsored by: Nokia
variable wait routines. DROP_GIANT() already manages that state in the
Giant interlock case.
- Assert that Giant is held when it is passed as a sleep interlock.
We used to have a single wait channel inside the kernel which could be
used by threads that just wanted to sleep for some time (the next
second). The old TTY layer was the only piece of code that still used
lbolt, because I already removed the use of lbolt from the NFS clients
and the VFS syncer.
Approved by: philip
msleep/mtx_sleep or the various cv_*wait*() routines. Currently, the
"unlock" behavior of PDROP and cv_wait_unlock() with Giant is not
permitted as it is will be confusing since Giant is fully unrecursed and
unlocked during a thread sleep.
This is handy for subsystems which wish to allow unlocked drivers to
continue to use Giant such as CAM, the new TTY layer, and the new USB
stack. CAM currently uses a hack that I told Scott to use because I
really didn't want to permit this behavior, and the TTY and USB patches
both have various patches to permit this.
MFC after: 2 weeks
routine wakes up proc0 so that proc0 can swap the thread back in.
Historically, this has been done by waking up proc0 directly from
setrunnable() itself via a wakeup(). When waking up a sleeping thread
that was swapped out (the usual case when waking proc0 since only sleeping
threads are eligible to be swapped out), this resulted in a bit of
recursion (e.g. wakeup() -> setrunnable() -> wakeup()).
With sleep queues having separate locks in 6.x and later, this caused a
spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock).
An attempt was made to fix this in 7.0 by making the proc0 wakeup use
the ithread mechanism for doing the wakeup. However, this required
grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep
elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated
into the same LOR since the thread lock would be some other sleepq lock.
Fix this by deferring the wakeup of the swapper until after the sleepq
lock held by the upper layer has been locked. The setrunnable() routine
now returns a boolean value to indicate whether or not proc0 needs to be
woken up. The end result is that consumers of the sleepq API such as
*sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup
proc0 if they get a non-zero return value from sleepq_abort(),
sleepq_broadcast(), or sleepq_signal().
Discussed with: jeff
Glanced at by: sam
Tested by: Jurgen Weber jurgen - ish com au
MFC after: 2 weeks
variables and sysctl nodes.
- In reset walk the children of kern_sched_stats and reset the counters
via the oid_arg1 pointer. This allows us to add arbitrary counters to
the tree and still reset them properly.
- Define a set of switch types to be passed with flags to mi_switch().
These types are named SWT_*. These types correspond to SCHED_STATS
counters and are automatically handled in this way.
- Make the new SWT_ types more specific than the older switch stats.
There are now stats for idle switches, remote idle wakeups, remote
preemption ithreads idling, etc.
- Add switch statistics for ULE's pickcpu algorithm. These stats include
how much migration there is, how often affinity was successful, how
often threads were migrated to the local cpu on wakeup, etc.
Sponsored by: Nokia
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
sched_sleep(). This removes extra thread_lock() acquisition and
allows the scheduler to decide what to do with the static boost.
- Change the priority arguments to cv_* to match sleepq/msleep/etc.
where 0 means no priority change. Catch -1 in cv_broadcastpri() and
convert it to 0 for now.
- Set a flag when sleeping in a way that is compatible with swapping
since direct priority comparisons are meaningless now.
- Add a sysctl to ule, kern.sched.static_boost, that defaults to on which
controls the boost behavior. Turning it off gives better performance
in some workloads but needs more investigation.
- While we're modifying sleepq, change signal and broadcast to both
return with the lock held as the lock was held on enter.
Reviewed by: jhb, peter
maintain a separate td_incruntime to hold unbilled CPU usage for
the thread that has the previous properties of td_runtime.
When thread information is requested using the thread monitoring
sysctls, export thread td_runtime instead of process rusage runtime
in kinfo_proc.
This restores the display of individual ithread and other kernel
thread CPU usage since inception in ps -H and top -SH, as well for
libthr user threads, valuable debugging information lost with the
move to try kthreads since they are no longer independent processes.
There is universal agreement that we should rewrite the process and
thread export sysctls, but this commit gets things going a bit
better in the mean time. Likewise, there are resevations about the
continued validity of statclock given the speed of modern processors.
Reviewed by: attilio, emaste, jhb, julian
opposed to what process. Since threads by default have teh name of the
process unless over-written with more useful information, just print the
thread name instead.
- p_sflag was mostly protected by PROC_LOCK rather than the PROC_SLOCK or
previously the sched_lock. These bugs have existed for some time.
- Allow swapout to try each thread in a process individually and then
swapin the whole process if any of these fail. This allows us to move
most scheduler related swap flags into td_flags.
- Keep ki_sflag for backwards compat but change all in source tools to
use the new and more correct location of P_INMEM.
Reported by: pho
Reviewed by: attilio, kib
Approved by: re (kensmith)
- Adapt sleepqueues to the new thread_lock() mechanism.
- Delay assigning the sleep queue spinlock as the thread lock until after
we've checked for signals. It is illegal for a thread to return in
mi_switch() with any lock assigned to td_lock other than the scheduler
locks.
- Change sleepq_catch_signals() to do the switch if necessary to simplify
the callers.
- Simplify timeout handling now that locking a sleeping thread has the
side-effect of locking the sleepqueue. Some previous races are no
longer possible.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
Now, we assume no more sched_lock protection for some of them and use the
distribuited loads method for vmmeter (distribuited through CPUs).
Reviewed by: alc, bde
Approved by: jeff (mentor)
td_ru. This removes the requirement for per-process synchronization in
statclock() and mi_switch(). This was previously supported by
sched_lock which is going away. All modifications to rusage are now
done in the context of the owning thread. reads proceed without locks.
- Aggregate exiting threads rusage in thread_exit() such that the exiting
thread's rusage is not lost.
- Provide a new routine, rufetch() to fetch an aggregate of all rusage
structures from all threads in a process. This routine must be used
in any place requiring a rusage from a process prior to it's exit. The
exited process's rusage is still available via p_ru.
- Aggregate tick statistics only on demand via rufetch() or when a thread
exits. Tick statistics are kept in the thread and protected by sched_lock
until it exits.
Initial patch by: attilio
Reviewed by: attilio, bde (some objections), arch (mostly silent)
Probabilly, a general approach is not the better solution here, so we should
solve the sched_lock protection problems separately.
Requested by: alc
Approved by: jeff (mentor)
vmcnts. This can be used to abstract away pcpu details but also changes
to use atomics for all counters now. This means sched lock is no longer
responsible for protecting counts in the switch routines.
Contributed by: Attilio Rao <attilio@FreeBSD.org>
1) adding the thread to the sleepq via sleepq_add() before dropping the
lock, and 2) dropping the sleepq lock around calls to lc_unlock() for
sleepable locks (i.e. locks that use sleepq's in their implementation).
event. Locking primitives that support this (mtx, rw, and sx) now each
include their own foo_sleep() routine.
- Rename msleep() to _sleep() and change it's 'struct mtx' object to a
'struct lock_object' pointer. _sleep() uses the recently added
lc_unlock() and lc_lock() function pointers for the lock class of the
specified lock to release the lock while the thread is suspended.
- Add wrappers around _sleep() for mutexes (mtx_sleep()), rw locks
(rw_sleep()), and sx locks (sx_sleep()). msleep() still exists and
is now identical to mtx_sleep(), but it is deprecated.
- Rename SLEEPQ_MSLEEP to SLEEPQ_SLEEP.
- Rewrite much of sleep.9 to not be msleep(9) centric.
- Flesh out the 'RETURN VALUES' section in sleep.9 and add an 'ERRORS'
section.
- Add __nonnull(1) to _sleep() and msleep_spin() so that the compiler will
warn if you try to pass a NULL wait channel. The functions already have
a KASSERT to that effect.
a thread is an idle thread, just see if it has the IDLETD
flag set. That flag will probably move to the pflags word
as it's permenent and never chenges for the life of the
system so it doesn't need locking.
- Remove also "MP SAFE" after prior "MPSAFE" pass. (suggested by bde)
- Remove extra blank lines in some cases.
- Add extra blank lines in some cases.
- Remove no-op comments consisting solely of the function name, the word
"syscall", or the system call name.
- Add punctuation.
- Re-wrap some comments.
want an equivalent of DELAY(9) that sleeps instead of spins. It accepts
a wmesg and a timeout and is not interrupted by signals. It uses a private
wait channel that should never be woken up by wakeup(9) or wakeup_one(9).
Glanced at by: phk
which allows to use it with different kinds of locks. For example it allows
to implement Solaris conditions variables which will be used in ZFS port on
top of sx(9) locks.
Reviewed by: jhb
channel for tsleep():
- Allow tsleep() on &lbolt without Giant with a timeout 0 since &lbolt has
an implied timeout.
- If &lbolt is used with msleep() pass NULL to sleepq_add() for the lock
object. Unlike other sleepq channels, &lbolt doesn't have an associated
owning lock.
if the specified priority is zero. This avoids a race where the calling
thread could read a snapshot of it's current priority, then a different
thread could change the first thread's priority, then the original thread
would call sched_prio() inside msleep() undoing the change made by the
second thread. I used a priority of zero as no thread that calls msleep()
or tsleep() should be specifying a priority of zero anyway.
The various places that passed 'curthread->td_priority' or some variant
as the priority now pass 0.
suspension code. When a thread A is going to sleep, it calls
sleepq_catch_signals() to detect any pending signals or thread
suspension request, if nothing happens, it returns without
holding process lock or scheduler lock, this opens a race
window which allows thread B to come in and do process
suspension work, however since A is still at running state,
thread B can do nothing to A, thread A continues, and puts
itself into actually sleeping state, but B has never seen it,
and it sits there forever until B is woken up by other threads
sometimes later(this can be very long delay or never
happen). Fix this bug by forcing sleepq_catch_signals to
return with scheduler lock held.
Fix sleepq_abort() by passing it an interrupted code, previously,
it worked as wakeup_one(), and the interruption can not be
identified correctly by sleep queue code when the sleeping
thread is resumed.
Let thread_suspend_check() returns EINTR or ERESTART, so sleep
queue no longer has to use SIGSTOP as a hack to build a return
value.
Reviewed by: jhb
MFC after: 1 week
Keep accounting time (in per-cpu) cputicks and the statistics counts
in the thread and summarize into struct proc when at context switch.
Don't reach across CPUs in calcru().
Add code to calibrate the top speed of cpu_tickrate() for variable
cpu_tick hardware (like TSC on power managed machines).
Don't enforce monotonicity (at least for now) in calcru. While the
calibrated cpu_tickrate ramps up it may not be true.
Use 27MHz counter on i386/Geode.
Use TSC on amd64 & i386 if present.
Use tick counter on sparc64
Keep track of time spent by the cpu in various contexts in units of
"cputicks" and scale to real-world microsec^H^H^H^H^H^H^H^Hclock_t
only when somebody wants to inspect the numbers.
For now "cputicks" are still derived from the current timecounter
and therefore things should by definition remain sensible also on
SMP machines. (The main reason for this first milestone commit is
to verify that hypothesis.)
On slower machines, the avoided multiplications to normalize timestams
at every context switch, comes out as a 5-7% better score on the
unixbench/context1 microbenchmark. On more modern hardware no change
in performance is seen.
of msleep(). msleep_spin() doesn't support changing the priority of the
thread while it is asleep nor does it support interruptible sleeps (PCATCH)
or the PDROP flag. It does support timeouts however. It differs from
msleep() in that the passed in mutex is a spin mutex. This means one can
use msleep_spin() and wakeup() with a spin mutex similar to msleep() and
wakeup() with a regular mutex. Note that the spin mutex in question needs
to come before sched_lock and the sleepq locks in lock order.
process as over the limit when its time is >= to the limit rather than >
the limit. Technically, if p->p_rux.rux_runtime.sec == p->p_pcpulimit
and p->p_rux.rux_runtime.frac == 0, the process hasn't exceeded the limit
yet. However, having the fraction exactly equal to 0 is rather rare, and
it is not worth the overhead to handle that edge case. With just the >
comparison, the process would have to exceed its limit by almost a second
before it was killed.
PR: kern/83192
Submitted by: Maciej Zawadzinski mzawadzinski at gmail dot com
Reviewed by: bde
MFC after: 1 week
critical_exit as the process is getting scheduled to run. This is subotimal
but for now avoid the LOR between the scheduler and the sleepq systems.
This is a 5.3 candidate.
Submitted by: davidxu
MFC After: 3 days
- Add a new _lock() call to each API that locks the associated chain lock
for a lock_object pointer or wait channel. The _lookup() functions now
require that the chain lock be locked via _lock() when they are called.
- Change sleepq_add(), turnstile_wait() and turnstile_claim() to lookup
the associated queue structure internally via _lookup() rather than
accepting a pointer from the caller. For turnstiles, this means that
the actual lookup of the turnstile in the hash table is only done when
the thread actually blocks rather than being done on each loop iteration
in _mtx_lock_sleep(). For sleep queues, this means that sleepq_lookup()
is no longer used outside of the sleep queue code except to implement an
assertion in cv_destroy().
- Change sleepq_broadcast() and sleepq_signal() to require that the chain
lock is already required. For condition variables, this lets the
cv_broadcast() and cv_signal() functions lock the sleep queue chain lock
while testing the waiters count. This means that the waiters count
internal to condition variables is no longer protected by the interlock
mutex and cv_broadcast() and cv_signal() now no longer require that the
interlock be held when they are called. This lets consumers of condition
variables drop the lock before waking other threads which can result in
fewer context switches.
MFC after: 1 month
the raw values including for child process statistics and only compute the
system and user timevals on demand.
- Fix the various kern_wait() syscall wrappers to only pass in a rusage
pointer if they are going to use the result.
- Add a kern_getrusage() function for the ABI syscalls to use so that they
don't have to play stackgap games to call getrusage().
- Fix the svr4_sys_times() syscall to just call calcru() to calculate the
times it needs rather than calling getrusage() twice with associated
stackgap, etc.
- Add a new rusage_ext structure to store raw time stats such as tick counts
for user, system, and interrupt time as well as a bintime of the total
runtime. A new p_rux field in struct proc replaces the same inline fields
from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux
field in struct proc contains the "raw" child time usage statistics.
ruadd() has been changed to handle adding the associated rusage_ext
structures as well as the values in rusage. Effectively, the values in
rusage_ext replace the ru_utime and ru_stime values in struct rusage. These
two fields in struct rusage are no longer used in the kernel.
- calcru() has been split into a static worker function calcru1() that
calculates appropriate timevals for user and system time as well as updating
the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a
copy of the process' p_rux structure to compute the timevals after updating
the runtime appropriately if any of the threads in that process are
currently executing. It also now only locks sched_lock internally while
doing the rux_runtime fixup. calcru() now only requires the caller to
hold the proc lock and calcru1() only requires the proc lock internally.
calcru() also no longer allows callers to ask for an interrupt timeval
since none of them actually did.
- calcru() now correctly handles threads executing on other CPUs.
- A new calccru() function computes the child system and user timevals by
calling calcru1() on p_crux. Note that this means that any code that wants
child times must now call this function rather than reading from p_cru
directly. This function also requires the proc lock.
- This finishes the locking for rusage and friends so some of the Giant locks
in exit1() and kern_wait() are now gone.
- The locking in ttyinfo() has been tweaked so that a shared lock of the
proctree lock is used to protect the process group rather than the process
group lock. By holding this lock until the end of the function we now
ensure that the process/thread that we pick to dump info about will no
longer vanish while we are trying to output its info to the console.
Submitted by: bde (mostly)
MFC after: 1 month
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
have been unified with that of msleep(9), further refine the sleepq
interface and consolidate some duplicated code:
- Move the pre-sleep checks for theaded processes into a
thread_sleep_check() function in kern_thread.c.
- Move all handling of TDF_SINTR to be internal to subr_sleepqueue.c.
Specifically, if a thread is awakened by something other than a signal
while checking for signals before going to sleep, clear TDF_SINTR in
sleepq_catch_signals(). This removes a sched_lock lock/unlock combo in
that edge case during an interruptible sleep. Also, fix
sleepq_check_signals() to properly handle the condition if TDF_SINTR is
clear rather than requiring the callers of the sleepq API to notice
this edge case and call a non-_sig variant of sleepq_wait().
- Clarify the flags arguments to sleepq_add(), sleepq_signal() and
sleepq_broadcast() by creating an explicit submask for sleepq types.
Also, add an explicit SLEEPQ_MSLEEP type rather than a magic number of
0. Also, add a SLEEPQ_INTERRUPTIBLE flag for use with sleepq_add() and
move the setting of TDF_SINTR to sleepq_add() if this flag is set rather
than sleepq_catch_signals(). Note that it is the caller's responsibility
to ensure that sleepq_catch_signals() is called if and only if this flag
is passed to the preceeding sleepq_add(). Note that this also removes a
sched_lock lock/unlock pair from sleepq_catch_signals(). It also ensures
that for an interruptible sleep, TDF_SINTR is always set when
TD_ON_SLEEPQ() is true.
the immediate awakening of proc0 (scheduler kproc, controls swapping
processes in and out). The scheduler process periodically awakens already,
so this will not result in processes not being swapped in, there will just
be more latency in between a thread being made runnable and the scheduler
waking up to swap the affected process back in.
since they are only accessed by curthread and thus do not need any
locking.
- Move pr_addr and pr_ticks out of struct uprof (which is per-process)
and directly into struct thread as td_profil_addr and td_profil_ticks
as these variables are really per-thread. (They are used to defer an
addupc_intr() that was too "hard" until ast()).
o Make debugging code conditional upon KDB instead of DDB.
o Call kdb_enter() instead of Debugger().
o Call kdb_backtrace() instead of db_print_backtrace() or backtrace().
kern_mutex.c:
o Replace checks for db_active with checks for kdb_active and make
them unconditional.
kern_shutdown.c:
o s/DDB_UNATTENDED/KDB_UNATTENDED/g
o s/DDB_TRACE/KDB_TRACE/g
o Save the TID of the thread doing the kernel dump so the debugger
knows which thread to select as the current when debugging the
kernel core file.
o Clear kdb_active instead of db_active and do so unconditionally.
o Remove backtrace() implementation.
kern_synch.c:
o Call kdb_reenter() instead of db_error().
than as one-off hacks in various other parts of the kernel:
- Add a function maybe_preempt() that is called from sched_add() to
determine if a thread about to be added to a run queue should be
preempted to directly. If it is not safe to preempt or if the new
thread does not have a high enough priority, then the function returns
false and sched_add() adds the thread to the run queue. If the thread
should be preempted to but the current thread is in a nested critical
section, then the flag TDF_OWEPREEMPT is set and the thread is added
to the run queue. Otherwise, mi_switch() is called immediately and the
thread is never added to the run queue since it is switch to directly.
When exiting an outermost critical section, if TDF_OWEPREEMPT is set,
then clear it and call mi_switch() to perform the deferred preemption.
- Remove explicit preemption from ithread_schedule() as calling
setrunqueue() now does all the correct work. This also removes the
do_switch argument from ithread_schedule().
- Do not use the manual preemption code in mtx_unlock if the architecture
supports native preemption.
- Don't call mi_switch() in a loop during shutdown to give ithreads a
chance to run if the architecture supports native preemption since
the ithreads will just preempt DELAY().
- Don't call mi_switch() from the page zeroing idle thread for
architectures that support native preemption as it is unnecessary.
- Native preemption is enabled on the same archs that supported ithread
preemption, namely alpha, i386, and amd64.
This change should largely be a NOP for the default case as committed
except that we will do fewer context switches in a few cases and will
avoid the run queues completely when preempting.
Approved by: scottl (with his re@ hat)
switch to. If a non-NULL thread pointer is passed in, then the CPU will
switch to that thread directly rather than calling choosethread() to pick
a thread to choose to.
- Make sched_switch() aware of idle threads and know to do
TD_SET_CAN_RUN() instead of sticking them on the run queue rather than
requiring all callers of mi_switch() to know to do this if they can be
called from an idlethread.
- Move constants for arguments to mi_switch() and thread_single() out of
the middle of the function prototypes and up above into their own
section.
is "void *" (it isn't) or that the default promotion of pid_t is int.
Instead, assume that casting "struct foo *" to "void *" and printing the
result with %p is useful, and that all pid_t's are representable as longs.
Fixed some minor style bugs (mainly spelling errors in comments).
sleep queue interface:
- Sleep queues attempt to merge some of the benefits of both sleep queues
and condition variables. Having sleep qeueus in a hash table avoids
having to allocate a queue head for each wait channel. Thus, struct cv
has shrunk down to just a single char * pointer now. However, the
hash table does not hold threads directly, but queue heads. This means
that once you have located a queue in the hash bucket, you no longer have
to walk the rest of the hash chain looking for threads. Instead, you have
a list of all the threads sleeping on that wait channel.
- Outside of the sleepq code and the sleep/cv code the kernel no longer
differentiates between cv's and sleep/wakeup. For example, calls to
abortsleep() and cv_abort() are replaced with a call to sleepq_abort().
Thus, the TDF_CVWAITQ flag is removed. Also, calls to unsleep() and
cv_waitq_remove() have been replaced with calls to sleepq_remove().
- The sched_sleep() function no longer accepts a priority argument as
sleep's no longer inherently bump the priority. Instead, this is soley
a propery of msleep() which explicitly calls sched_prio() before
blocking.
- The TDF_ONSLEEPQ flag has been dropped as it was never used. The
associated TDF_SET_ONSLEEPQ and TDF_CLR_ON_SLEEPQ macros have also been
dropped and replaced with a single explicit clearing of td_wchan.
TD_SET_ONSLEEPQ() would really have only made sense if it had taken
the wait channel and message as arguments anyway. Now that that only
happens in one place, a macro would be overkill.
SW_INVOL. Assert that one of these is set in mi_switch() and propery
adjust the rusage statistics. This is to simplify the large number of
users of this interface which were previously all required to adjust the
proper counter prior to calling mi_switch(). This also facilitates more
switch and locking optimizations.
- Change all callers of mi_switch() to pass the appropriate paramter and
remove direct references to the process statistics.
clobbers this variable. Long ago, when the idle loop wasn't in a
process, it set switchtime.tv_sec to zero to indicate that the time
needs to be read after the idle loop finishes. The special case for
this isn't needed now that there is an idle process (for each CPU).
The time is read in the normal way when the idle process is switched
away from. The seconds component of the time is only zero for the
first second after the uptime is set, and the mostly-dead code was only
executed during this time. (This was slightly broken by using uptimes
instead of times relative to the Epoch -- in the original version the
seconds component of the time was only 0 for the first second after
the Epoch.)
In mi_switch(), moved the setting of switchticks to just after the
first (and now only) setting of switchtime. This setting used to be
delayed since a late setting was needed for the idle case and an early
setting was not needed. Now the early setting is needed so that
fork_exit() doesn't need to set either switchtime or switchticks.
Removed now-completely-rotted comment attached to this. Most of the
code described by the comment had already moved to sched_switch().
the TLB and ~1600 if it is not. Therefore, it is more effecient to
invalidate the TLB after operations that use CMAP rather than before.
- So that the tlb is invalidated prior to switching off of a processor, we
must change the switchin functions to switchout functions.
- Remove td_switchout from the thread and move it to the x86 pcb.
- Move the code that calls switchout into swtch.s. These changes make this
optimization truely x86 specific.
- Update some stale comments.
- Sort a couple of includes.
- Only set 'newcpu' in updatepri() if we use it.
- No functional changes.
Obtained from: bde (via an old diff I got a long time ago)
cpu_switch() where both the old and new threads are passed in as
arguments. Only powerpc uses the old conventions now.
- Update comments in the Alpha swtch.s to reflect KSE changes.
Tested by: obrien, marcel
or unblock a thread in kernel, and allow UTS to specify whether syscall
should be restarted.
o Add ability for UTS to monitor signal comes in and removed from process,
the flag PS_SIGEVENT is used to indicate the events.
o Add a KMF_WAITSIGEVENT for KSE mailbox flag, UTS call kse_release with
this flag set to wait for above signal event.
o For SA based thread, kernel masks all signal in its signal mask, let
UTS to use kse_thr_interrupt interrupt a thread, and install a signal
frame in userland for the thread.
o Add a tm_syncsig in thread mailbox, when a hardware trap occurs,
it is used to deliver synchronous signal to userland, and upcall
is schedule, so UTS can process the synchronous signal for the thread.
Reviewed by: julian (mentor)
prime objectives are:
o Implement a syscall path based on the epc inststruction (see
sys/ia64/ia64/syscall.s).
o Revisit the places were we need to save and restore registers
and define those contexts in terms of the register sets (see
sys/ia64/include/_regset.h).
Secundairy objectives:
o Remove the requirement to use contigmalloc for kernel stacks.
o Better handling of the high FP registers for SMP systems.
o Switch to the new cpu_switch() and cpu_throw() semantics.
o Add a good unwinder to reconstruct contexts for the rare
cases we need to (see sys/contrib/ia64/libuwx)
Many files are affected by this change. Functionally it boils
down to:
o The EPC syscall doesn't preserve registers it does not need
to preserve and places the arguments differently on the stack.
This affects libc and truss.
o The address of the kernel page directory (kptdir) had to
be unstaticized for use by the nested TLB fault handler.
The name has been changed to ia64_kptdir to avoid conflicts.
The renaming affects libkvm.
o The trapframe only contains the special registers and the
scratch registers. For syscalls using the EPC syscall path
no scratch registers are saved. This affects all places where
the trapframe is accessed. Most notably the unaligned access
handler, the signal delivery code and the debugger.
o Context switching only partly saves the special registers
and the preserved registers. This affects cpu_switch() and
triggered the move to the new semantics, which additionally
affects cpu_throw().
o The high FP registers are either in the PCB or on some
CPU. context switching for them is done lazily. This affects
trap().
o The mcontext has room for all registers, but not all of them
have to be defined in all cases. This mostly affects signal
delivery code now. The *context syscalls are as of yet still
unimplemented.
Many details went into the removal of the requirement to use
contigmalloc for kernel stacks. The details are mostly CPU
specific and limited to exception_save() and exception_restore().
The few places where we create, destroy or switch stacks were
mostly simplified by not having to construct physical addresses
and additionally saving the virtual addresses for later use.
Besides more efficient context saving and restoring, which of
course yields a noticable speedup, this also fixes the dreaded
SMP bootup problem as a side-effect. The details of which are
still not fully understood.
This change includes all the necessary backward compatibility
code to have it handle older userland binaries that use the
break instruction for syscalls. Support for break-based syscalls
has been pessimized in favor of a clean implementation. Due to
the overall better performance of the kernel, this will still
be notived as an improvement if it's noticed at all.
Approved by: re@ (jhb)
- Move struct sigacts out of the u-area and malloc() it using the
M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
and thread_stopped() are now MP safe.
Reviewed by: arch@
Approved by: re (rwatson)