about calls to SYSCTL_OUT() made with locks held if the buffer has not
been pre-wired. SYSCTL_OUT() should not be called while holding locks,
but if this is not possible, the buffer should be wired by calling
sysctl_wire_old_buffer() before grabbing any locks.
that LIO_READ and LIO_WRITE were requests for kevent()-based
notification of completion. Modify _aio_aqueue() to recognize LIO_READ
and LIO_WRITE.
Notes: (1) The patch provided by the PR perpetuates a second bug in this
code, a direct access to user-space memory. This change fixes that bug
as well. (2) This change is to code that implements a deprecated interface.
It should probably be removed after an MFC.
PR: kern/39556
investigate the problem described below.
I am seeing some strange livelock on recent -current sources with
a slow box under heavy load, which disappears with this change.
This might suggest some kind of problem (either insufficient locking,
or mishandling of priorities) in the poll_idle thread.
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
linker_load_module() instead.
This fixes a bug where the kernel was unable to properly locate and
load a kernel module in vfs_mount() (and probably in the netgraph
code as well since it was using the same function). This is because
the linker_load_file() does not properly search the module path.
Problem found by: peter
Reviewed by: peter
Thanks to: peter
kernel access control.
Invoke appropriate MAC framework entry points to authorize readdir()
operations in the native ABI.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
Make idle process state more consistant.
Add an assert on thread state.
Clean up idleproc/mi_switch() interaction.
Use a local instead of referencing curthread 7 times in a row
(I've been told curthread can be expensive on some architectures)
Remove some commented out code.
Add a little commented out code (completion coming soon)
Reviewed by: jhb@freebsd.org
kernel access control
Invoke appropriate MAC framework entry points to authorize a number
of vnode operations, including read, write, stat, poll. This permits
MAC policies to revoke access to files following label changes,
and to limit information spread about the file to user processes.
Note: currently the file cached credential is used for some of
these authorization check. We will need to expand some of the
MAC entry point APIs to permit multiple creds to be passed to
the access control check to allow diverse policy behavior.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Restructure the vn_open_cred() access control checks to invoke
the MAC entry point for open authorization. Note that MAC can
reject open requests where existing DAC code skips the open
authorization check due to O_CREAT. However, the failure mode
here is the same as other failure modes following creation,
wherein an empty file may be left behind.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke an appropriate MAC entry point to authorize execution of
a file by a process. The check is placed slightly differently
than it appears in the trustedbsd_mac tree so that it prevents
a little more information leakage about the target of the execve()
operation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
the inits/destroys are done without the cache locks held even in the
persistent-lock calls. I may be cheating a little by using the MAC
"already initialized" flag for now.
other references to that vnode as a trace vnode in other processes as well
as in any pending requests on the todo list. Thus, it is possible for a
ktrace request structure to have a NULL ktr_vp when it is destroyed in
ktr_freerequest(). We shouldn't call vrele() on the vnode in that case.
Reported by: bde
kernel access control.
Instrument chdir() and chroot()-related system calls to invoke
appropriate MAC entry points to authorize the two operations.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Implement two IOCTLs at the socket level to retrieve the primary
and peer labels from a socket. Note that this user process interface
will be changing to improve multi-policy support.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Authorize vop_readlink() and vop_lookup() activities during recursive
path lookup via namei() via calls to appropriate MAC entry points.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Authorize the creation of UNIX domain sockets in the file system
namespace via an appropriate invocation a MAC framework entry
point.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument ctty driver invocations of various vnode operations on the
terminal controlling tty to perform appropriate MAC framework
authorization checks.
Note: VOP_IOCTL() on the ctty appears to be authorized using NOCRED in
the existing code rather than td->td_ucred. Why?
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the ktrace write operation so that it invokes the MAC
framework's vnode write authorization check.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the kernel ACL retrieval and modification system calls
to invoke MAC framework entry points to authorize these operations.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument connect(), listen(), and bind() system calls to invoke
MAC framework entry points to permit policies to authorize these
requests. This can be useful for policies that want to limit
the activity of processes involving particular types of IPC and
network activity.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
sysctl purposes. Also add two fields to struct vnode, v_cachedfs and
v_cachedid, which hold the vnode's device and file id and are filled in
by vn_open_cred() and vn_stat().
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on sockets.
In particular, invoke entry points during socket allocation and
destruction, as well as creation by a process or during an
accept-scenario (sonewconn). For UNIX domain sockets, also assign
a peer label. As the socket code isn't locked down yet, locking
interactions are not yet clear. Various protocol stack socket
operations (such as peer label assignment for IPv4) will follow.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on vnodes.
In particular, initialize the label when the vnode is allocated or
reused, and destroy the label when the vnode is going to be released,
or reused. Wow, an object where there really is exactly one place
where it's allocated, and one other where it's freed. Amazing.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke additional MAC entry points when an mbuf packet header is
copied to another mbuf: release the old label if any, reinitialize
the new header, and ask the MAC framework to copy the header label
data. Note that this requires a potential allocation operation,
but m_copy_pkthdr() is not permitted to fail, so we must block.
Since we now use interrupt threads, this is possible, but not
desirable.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on header
mbufs. In particular, invoke entry points during the two mbuf
header allocation cases, and the mbuf freeing case. Pass the "how"
argument at allocation time to the MAC framework so that it can
determine if it is permitted to block (as with policy modules),
and permit the initialization entry point to fail if it needs to
allocate memory but is not permitted to, failing the mbuf
allocation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Implement MAC framework access control entry points relating to
operations on mountpoints. Currently, this consists only of
access control on mountpoint listing using the various statfs()
variations. In the future, it might also be desirable to
implement checks on mount() and unmount().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs