These types are unlikely to ever become very MD. They include:
clockid_t, ct_rune_t, fflags_t, intrmask_t, mbstate_t, off_t, pid_t,
rune_t, socklen_t, timer_t, wchar_t, and wint_t.
While moving them, make a few adjustments (submitted by bde):
o __ct_rune_t needs to be precisely `int', not necessarily __int32_t,
since the arg type of the ctype functions is int.
o __rune_t, __wchar_t and __wint_t inherit this via a typedef of
__ct_rune_t.
o Some minor wording changes in the comment blocks for ct_rune_t and
mbstate_t.
Submitted by: bde (partially)
called <machine/_types.h>.
o <machine/ansi.h> will continue to live so it can define MD clock
macros, which are only MD because of gratuitous differences between
architectures.
o Change all headers to make use of this. This mainly involves
changing:
#ifdef _BSD_FOO_T_
typedef _BSD_FOO_T_ foo_t;
#undef _BSD_FOO_T_
#endif
to:
#ifndef _FOO_T_DECLARED
typedef __foo_t foo_t;
#define _FOO_T_DECLARED
#endif
Concept by: bde
Reviewed by: jake, obrien
<stdint.h>. Previously, parts were defined in <machine/ansi.h> and
<machine/limits.h>. This resulted in two problems:
(1) Defining macros in <machine/ansi.h> gets in the way of that
header only defining types.
(2) Defining C99 limits in <machine/limits.h> adds pollution to
<limits.h>.
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
hardly MD, since all our platforms share the same macro. It's not
really compiler dependent either, but this helps in reducing
<machine/ansi.h> to only type definitions.
implementations can provide a base zero ffs function if they wish.
This changes
#define RQB_FFS(mask) (ffs64(mask))
foo = RQB_FFS(mask) - 1;
to
#define RQB_FFS(mask) (ffs64(mask) - 1)
foo = RQB_FFS(mask);
On some platforms we can get the "- 1" for free, eg: those that use the
C code for ffs64().
Reviewed by: jake (in principle)
struct uuid defined in <sys/uuid.h>.
Use uuid/UUID instead of guid/GUID to emphasize that the
identifiers are DCE version 1 identifiers and also to avoid
inconsistencies as much a possible.
As a minor positive side-effect, code at -O0 is more optimal. As a
minor negative side-effect, certain boundary cases yield no better
code than non-boundary cases. For example, atomic_set_acq_32(p, 0)
does a useless logical OR with value 0. This was previously elimina-
ted as part of if/while optimizations. Non-boundary cases yield
identical code at -O1 and -O2.
- Don't include ia64_cpu.h and cpu.h
- Guard definitions by _NO_NAMESPACE_POLLUTION
- Move definition of KERNBASE to vmparam.h
o Move definitions of IA64_RR_{BASE|MASK} to vmparam.h
o Move definitions of IA64_PHYS_TO_RR{6|7} to vmparam.h
o While here, remove some left-over Alpha references.
function to return the total number of CPUs and not the highest
CPU id.
o Define mp_maxid based on the minimum of the actual number of
CPUs in the system and MAXCPU.
o In cpu_mp_add, when the CPU id of the CPU we're trying to add
is larger than mp_maxid, don't add the CPU. Formerly this was
based on MAXCPU. Don't count CPUs when we add them. We already
know how many CPUs exist.
o Replace MAXCPU with mp_maxid when used in loops that iterate
over the id space. This avoids a couple of useless iterations.
o In cpu_mp_unleash, use the number of CPUs to determine if we
need to launch the CPUs.
o Remove mp_hardware as it's not used anymore.
o Move the IPI vector array from mp_machdep.c to sal.c. We use
the array as a centralized place to collect vector assignments.
Note that we still assign vectors to SMP specific IPIs in
non-SMP configurations. Rename the array from mp_ipi_vector to
ipi_vector.
o Add IPI_MCA_RENDEZ and IPI_MCA_CMCV. These are used by MCA.
Note that IPI_MCA_CMCV is not SMP specific.
o Initialize the ipi_vector array so that we place the IPIs in
sensible priority classes. The classes are relative to where
the AP wake-up vector is located to guarantee that it's the
highest priority (external) interrupt. Class assignment is
as follows:
class IPI notes
x AP wake-up (normally x=15)
x-1 MCA rendezvous
x-2 AST, Rendezvous, stop
x-3 CMCV, test
o Create pcb_save as the backend for savectx and cpu_switch.
o While here, use explicit bundling for pcb_save and optimize
for compactness (~87% density).
o Not part of the commit is a backend pcb_restore. restorectx()
still jumps halfway into cpu_switch().
only for exceptions.
While adding this to exception_save and exception_restore, it was hard
to find a good place to put the instructions. The code sequence was
sufficiently arbitrarily ordered that the density was low (roughly 67%).
No explicit bundling was used.
Thus, I rewrote the functions to optimize for density (close to 80% now),
and added explicit bundles and nop instructions. The immediate operand
on the nop instruction has been incremented with each instance, to make
debugging a bit easier when looking at recurring patterns. Redundant
stops have been removed as much as possible. Future optimizations can
focus more on performance. A well-placed lfetch can make all the
difference here!
Also, the FRAME_Fxx defines in frame.h were mostly bogus. FRAME_F10 to
FRAME_F15 were copied from FRAME_F9 and still had the same index. We
don't use them yet, so nothing was broken.
i386/ia64/alpha - catch up to sparc64/ppc:
- replace pmap_kernel() with refs to kernel_pmap
- change kernel_pmap pointer to (&kernel_pmap_store)
(this is a speedup since ld can set these at compile/link time)
all platforms (as suggested by jake):
- gc unused pmap_reference
- gc unused pmap_destroy
- gc unused struct pmap.pm_count
(we never used pm_count - we track address space sharing at the vmspace)
_BYTE_ORDER. These are far more useful than their non-underscored
equivalents as these can be used in restricted namespace environments.
Mark the non-underscored variants as deprecated.
and cpu_critical_exit() and moves associated critical prototypes into their
own header file, <arch>/<arch>/critical.h, which is only included by the
three MI source files that need it.
Backout and re-apply improperly comitted syntactical cleanups made to files
that were still under active development. Backout improperly comitted program
structure changes that moved localized declarations to the top of two
procedures. Partially re-apply one of the program structure changes to
move 'mask' into an intermediate block rather then in three separate
sub-blocks to make the code more readable. Re-integrate bug fixes that Jake
made to the sparc64 code.
Note: In general, developers should not gratuitously move declarations out
of sub-blocks. They are where they are for reasons of structure, grouping,
readability, compiler-localizability, and to avoid developer-introduced bugs
similar to several found in recent years in the VFS and VM code.
Reviewed by: jake
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core