sockets for IPv6 raw sockets: separately lock the inpcb for determining
the destination address for a connect()'d raw socket at the rip6_send()
layer, and then re-acquire the inpcb lock in the rip6_output() layer to
query other options on the socket. Previously, the global raw IP socket
lock was used, which while correct and marginally more consistent, could
add significantly to global raw IP socket lock contention.
MFC after: 1 week
lock the inpcb and use a local stack variable to copy to/from userspace
so that sooptcopyin()/sooptcopyout() aren't called while holding an
rwlock.
While here, fix a bug in which a failed sooptcopyin() might lead to
partially consistent ICMPv6 filters on the socket by not ignoring the
error returned by sooptcopyin().
MFC after: 2 weeks
using the passed arguments explicitly and unconditionally rather than
testing them and calling panic(). The result is the same but easier
to read.
MFC after: 3 days
2) Adds some __UserSpace__ on some of the common defines that
the user space code needs
3) Fixes a bug when we send up data to a user that failed. We
need to a) trim off the data chunk headers, if present, and
b) make sure the frag bit is communicated properly for the
msgs coming off the stream queues... i.e. we see if some
of the msg has been taken.
Obtained from: jeli contributed the VIMAGE changes on this pass Thanks Julain!
to global hostname and domainname variables. Where necessary, copy
to or from a stack-local buffer before performing copyin() or
copyout(). A few uses, such as in cd9660 and daemon_saver, remain
under-synchronized and will require further updates.
Correct a bug in which a failed copyin() of domainname would leave
domainname potentially corrupted.
MFC after: 3 weeks
dispatched without Giant, and add NETISR_FORCEQUEUE, which allows specific
netisr handlers to always be dispatched via a queue (deferred). Mark the
usb and if_ppp netisr handlers as NETISR_FORCEQUEUE, and explicitly
acquire Giant in those handlers.
Previously, any netisr handler not marked NETISR_MPSAFE would necessarily
run deferred and with Giant acquired. This change removes Giant
scaffolding from the netisr infrastructure, but NETISR_FORCEQUEUE allows
non-MPSAFE handlers to continue to force deferred dispatch so as to avoid
lock order reversals between their acqusition of Giant and any calling
context.
It is likely we will be able to remove NETISR_FORCEQUEUE once
IFF_NEEDSGIANT is removed, as non-MPSAFE usb and if_ppp drivers will no
longer be supported.
Reviewed by: bz
MFC after: 1 month
X-MFC note: We can't remove NETISR_MPSAFE from stable/7 for KPI reasons,
but the rest can go back.
code is believed to be MPSAFE, and leaving aside the IPv6 route cache in
forwarding, Giant appears not to adequately synchronize the data structures
in the input or forwarding paths.
there still being some well-known races in mld6 and nd6, running with
Giant over the netisr handler provides little or not additional
synchronization that might cause mld6 and nd6 to behave better.
- Vimage prep - these are major restructures to move
all global variables to be accessed via a macro or two.
The variables all go into a single structure.
- Asconf address addition tweaks (add_or_del Interfaces)
- Fix rwnd calcualtion to be more conservative.
- Support SACK_IMMEDIATE flag to skip delayed sack
by demand of peer.
- Comment updates in the sack mapping calculations
- Invarients panic added.
- Pre-support for UDP tunneling (we can do this on
MAC but will need added support from UDP to
get a "pipe" of UDP packets in.
- clear trace buffer sysctl added when local tracing on.
Note the majority of this huge patch is all the vimage prep stuff :-)
monitoring UDP connections using sysctls. In some cases, add
previously missing locking of inpcbs, as inp_socket is followed,
which also allows us to drop global locks more quickly.
MFC after: 1 week
ip6_savecontrol in preparation for udp_append() to no longer
need an WLOCK as we will no longer be modifying socket options.
Requested by: rwatson
Reviewed by: gnn
MFC after: 10 days
- Adds some prepwork (Not all yet) for vimage in particular
support the delete the sctppcbinfo.xx structs. There is
still a leak in here if it were to be called plus we stil
need the regrouping (From Me and Michael Tuexen)
- Adds support for UDP tunneling. For BSD there is no
socket yet setup so its disabled, but major argument
changes are in here to emcompass the passing of the port
number (zero when you don't have a udp tunnel, the default
for BSD). Will add some hooks in UDP here shortly (discussed
with Robert) that will allow easy tunneling. (Mainly from
Peter Lei and Michael Tuexen with some BSD work from me :-D)
- Some ease for windows, evidently leave is reserved by their
compile move label leave: -> out:
MFC after: 1 week
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
receiving or transmitting.
With IPv6 raw sockets, read lock rather than write lock the inpcb when
receiving. Unfortunately, IPv6 source address selection appears to
require a write lock on the inpcb for the time being.
MFC after: 3 months
explicitly select write locking for all use of the inpcb mutex.
Update some pcbinfo lock assertions to assert locked rather than
write-locked, although in practice almost all uses of the pcbinfo
rwlock main exclusive, and all instances of inpcb lock acquisition
are exclusive.
This change should introduce (ideally) little functional change.
However, it lays the groundwork for significantly increased
parallelism in the TCP/IP code.
MFC after: 3 months
Tested by: kris (superset of committered patch)
(ECMP) for both IPv4 and IPv6. Previously, multipath route insertion
is disallowed. For example,
route add -net 192.103.54.0/24 10.9.44.1
route add -net 192.103.54.0/24 10.9.44.2
The second route insertion will trigger an error message of
"add net 192.103.54.0/24: gateway 10.2.5.2: route already in table"
Multiple default routes can also be inserted. Here is the netstat
output:
default 10.2.5.1 UGS 0 3074 bge0 =>
default 10.2.5.2 UGS 0 0 bge0
When multipath routes exist, the "route delete" command requires
a specific gateway to be specified or else an error message would
be displayed. For example,
route delete default
would fail and trigger the following error message:
"route: writing to routing socket: No such process"
"delete net default: not in table"
On the other hand,
route delete default 10.2.5.2
would be successful: "delete net default: gateway 10.2.5.2"
One does not have to specify a gateway if there is only a single
route for a particular destination.
I need to perform more testings on address aliases and multiple
interfaces that have the same IP prefixes. This patch as it
stands today is not yet ready for prime time. Therefore, the ECMP
code fragments are fully guarded by the RADIX_MPATH macro.
Include the "options RADIX_MPATH" in the kernel configuration
to enable this feature.
Reviewed by: robert, sam, gnn, julian, kmacy
Removed dead code that assumed that M_TRYWAIT can return NULL; it's not true
since the advent of MBUMA.
Reviewed by: arch
There are ongoing disputes as to whether we want to switch to directly using
UMA flags M_WAITOK/M_NOWAIT for mbuf(9) allocation.
In that case return an continue processing the packet without IPsec.
PR: 121384
MFC after: 5 days
Reported by: Cyrus Rahman (crahman gmail.com)
Tested by: Cyrus Rahman (crahman gmail.com) [slightly older version]
No need to compile 'dead' code.
I am leaving it in because we will have to review the concept and
should use the common function in various places.
MFC after: 5 days
ipsec*_set_policy and do the privilege check only if needed.
Try to assimilate both ip*_ctloutput code blocks calling ipsec*_set_policy.
Reviewed by: rwatson
Introduce a new privilege allowing to set certain IP header options
(hop-by-hop, routing headers).
Leave a few comments to be addressed later.
Reviewed by: rwatson (older version, before addressing his comments)
destroy call; this transpired because the inpcb alloc path for IPv4/IPv6
is the same code, but IPv6 has a separate free path. The results was
that as new IPv6 TCP connections were created, kernel memory would
gradually leak.
MFC after: 3 days
Reported by: tanyong <tanyong at ercist dot iscas dot ac dot cn>,
zhouzhouyi
a good job of it) in the copypktopts() function, just call ip6_clearpktopts()
directly. Otherwise, the callers of this function would end up freeing the
memory twice.
Reviewed by: jinmei
PR: kern/116360
in the TrustedBSD MAC Framework:
- Add mac_atalk.c and add explicit entry point mac_netatalk_aarp_send()
for AARP packet labeling, rather than using a generic link layer
entry point.
- Add mac_inet6.c and add explicit entry point mac_netinet6_nd6_send()
for ND6 packet labeling, rather than using a generic link layer entry
point.
- Add expliict entry point mac_netinet_arp_send() for ARP packet
labeling, and mac_netinet_igmp_send() for IGMP packet labeling,
rather than using a generic link layer entry point.
- Remove previous genering link layer entry point,
mac_mbuf_create_linklayer() as it is no longer used.
- Add implementations of new entry points to various policies, largely
by replicating the existing link layer entry point for them; remove
old link layer entry point implementation.
- Make MAC_IFNET_LOCK(), MAC_IFNET_UNLOCK(), and mac_ifnet_mtx global
to the MAC Framework rather than static to mac_net.c as it is now
needed outside of mac_net.c.
Obtained from: TrustedBSD Project