Specifically, on mappings with PG_G set pmap_remove() not only performs
the necessary per-page invlpg invalidations but also performs an
unnecessary invalidation of the entire set of non-PG_G entries.
Reviewed by: tegge
Previously, we tried to allow this only for root. However, we were calling
suser() on the *target* process rather than the current process. This
means that if you can ptrace() a process running as root you can set a
hardware watch point in the kernel. In practice I think you probably have
to be root in order to pass the p_candebug() checks in ptrace() to attach
to a process running as root anyway. Rather than fix the suser(), I just
axed the entire idea, as I can't think of any good reason _at all_ for
userland to set hardware watch points for KVM.
MFC after: 3 days
Also thinks hardware watch points on KVM from userland are bad: bde, rwatson
to be 'long' instead of 'int' so that sysctl(8) correctly displays
the 8 returned bytes as a single 'long' instead of two 'int' values.
Submitted by: peter
In at least one benchmark this showed around a 20% performance increase.
If other workloads do benefit from having hyperthreads service interrupts,
we can always make this a loader tunable.
MFC after: 3 days
Tested by: ps
- Throw out all of the logical APIC ID stuff. The Intel docs are somewhat
ambiguous, but it seems that the "flat" cluster model we are currently
using is only supported on Pentium and P6 family CPUs. The other
"hierarchy" cluster model that is supported on all Intel CPUs with
local APICs is severely underdocumented. For example, it's not clear
if the OS needs to glean the topology of the APIC hierarchy from
somewhere (neither ACPI nor MP Table include it) and setup the logical
clusters based on the physical hierarchy or not. Not only that, but on
certain Intel chipsets, even though there were 4 CPUs in a logical
cluster, all the interrupts were only sent to one CPU anyway.
- We now bind interrupts to individual CPUs using physical addressing via
the local APIC IDs. This code has also moved out of the ioapic PIC
driver and into the common interrupt source code so that it can be
shared with MSI interrupt sources since MSI is addressed to APICs the
same way that I/O APIC pins are.
- Interrupt source classes grow a new method pic_assign_cpu() to bind an
interrupt source to a specific local APIC ID.
- The SMP code now tells the interrupt code which CPUs are avaiable to
handle interrupts in a simpler and more intuitive manner. For one thing,
it means we could now choose to not route interrupts to HT cores if we
wanted to (this code is currently in place in fact, but under an #if 0
for now).
- For now we simply do static round-robin of IRQs to CPUs when the first
interrupt handler just as before, with the change that IRQs are now
bound to individual CPUs rather than groups of up to 4 CPUs.
- Because the IRQ to CPU mapping has now been moved up a layer, it would
be easier to manage this mapping from higher levels. For example, we
could allow drivers to specify a CPU affinity map for their interrupts,
or we could allow a userland tool to bind IRQs to specific CPUs.
The MFC is tentative, but I want to see if this fixes problems some folks
had with UP APIC kernels on 6.0 on SMP machines (an SMP kernel would work
fine, but a UP APIC kernel (such as GENERIC in RELENG_6) would lose
interrupts).
MFC after: 1 week
Keep accounting time (in per-cpu) cputicks and the statistics counts
in the thread and summarize into struct proc when at context switch.
Don't reach across CPUs in calcru().
Add code to calibrate the top speed of cpu_tickrate() for variable
cpu_tick hardware (like TSC on power managed machines).
Don't enforce monotonicity (at least for now) in calcru. While the
calibrated cpu_tickrate ramps up it may not be true.
Use 27MHz counter on i386/Geode.
Use TSC on amd64 & i386 if present.
Use tick counter on sparc64
Rename struct thread's td_sticks to td_pticks, we will need the
other name for more appropriately named use shortly. Reduce it
from uint64_t to u_int.
Clear td_pticks whenever we enter the kernel instead of recording
its value as reference for userret(). Use the absolute value of
td->pticks in userret() and eliminate third argument.
Keep track of time spent by the cpu in various contexts in units of
"cputicks" and scale to real-world microsec^H^H^H^H^H^H^H^Hclock_t
only when somebody wants to inspect the numbers.
For now "cputicks" are still derived from the current timecounter
and therefore things should by definition remain sensible also on
SMP machines. (The main reason for this first milestone commit is
to verify that hypothesis.)
On slower machines, the avoided multiplications to normalize timestams
at every context switch, comes out as a 5-7% better score on the
unixbench/context1 microbenchmark. On more modern hardware no change
in performance is seen.
the callers if the exec either succeeds or fails early.
- Move the code to call exit1() if the exec fails after the vmspace is
gone to the bottom of kern_execve() to cut down on some code duplication.
dedicated to storing pv entries, originally so that kva didn't have to be
allocated at inconvenient times. For amd64, we can get the same effect by
using the direct map area. Allocating pages is the same as with the object
backed method, but now we can just lookup the page in the direct map area.
Thus, no more pageable kva is reserved. This is the single largest
consumer of kva on our work machines and this change should help conserve
the fixed size 2GB pageable kva on the amd64 kernel.
There are a pair of sysctl nodes introduced, named the same as their
tunable counterparts. vm.pmap.shpgperproc and vm.pmap.pv_entry_max
They work just like the tunables of the same path, except the values are
linked. The pv entry cap is now dynamically changeable.
I didn't make them totally unlimited because we need some sort of safety
limit still. One could consume all physical memory without a cap.
is a fatal fault if we are holding any non-sleepable locks. This should
cut down on the number of bogus LORs we currently get when the kernel
panics due to a NULL (or bogus) pointer dereference that goes wandering
off into the VM system which tries to acquire locks and then kicks off
the spurious LORs. This should probably be ported to all the archs at
some point.
Tested on: i386
to COMPAT_43TTY.
Add COMPAT_43TTY to NOTES and */conf/GENERIC
Compile tty_compat.c only under the new option.
Spit out
#warning "Old BSD tty API used, please upgrade."
if ioctl_compat.h gets #included from userland.
param.h. Per request, I've placed these just after the
_NO_NAMESPACE_POLLUTION ifndef. I've not renamed anything yet, but
may since we don't need the __.
Submitted by: bde, jhb, scottl, many others.
various pcib drivers to use their own private devclass_t variables for
their modules.
- Use the DEFINE_CLASS_0() macro to declare drivers for the various pcib
drivers while I'm here.
- provide an interface (macros) to the page coloring part of the VM system,
this allows to try different coloring algorithms without the need to
touch every file [1]
- make the page queue tuning values readable: sysctl vm.stats.pagequeue
- autotuning of the page coloring values based upon the cache size instead
of options in the kernel config (disabling of the page coloring as a
kernel option is still possible)
MD changes:
- detection of the cache size: only IA32 and AMD64 (untested) contains
cache size detection code, every other arch just comes with a dummy
function (this results in the use of default values like it was the
case without the autotuning of the page coloring)
- print some more info on Intel CPU's (like we do on AMD and Transmeta
CPU's)
Note to AMD owners (IA32 and AMD64): please run "sysctl vm.stats.pagequeue"
and report if the cache* values are zero (= bug in the cache detection code)
or not.
Based upon work by: Chad David <davidc@acns.ab.ca> [1]
Reviewed by: alc, arch (in 2004)
Discussed with: alc, Chad David, arch (in 2004)
amd64_set_watch() as 'unsigned int' and 'unsigned int' is 32bit long on amd64.
Even with that fix hardware watchpoint don't work for me on amd64, ie. when
I set the watchpoint and write a byte there, nothing happens.
with flags bitfield and set BI_CAN_EXEC_DYN flag for all brands that usually
allow executing elf dynamic binaries (aka shared libraries). When it is
requested to execute ET_DYN elf image check if this flag is on after we
know the elf brand allowing execution if so.
PR: kern/87615
Submitted by: Marcin Koziej <creep@desk.pl>
passing a pointer to an opaque clockframe structure and requiring the
MD code to supply CLKF_FOO() macros to extract needed values out of the
opaque structure, just pass the needed values directly. In practice this
means passing the pair (usermode, pc) to hardclock() and profclock() and
passing the boolean (usermode) to hardclock_cpu() and hardclock_process().
Other details:
- Axe clockframe and CLKF_FOO() macros on all architectures. Basically,
all the archs were taking a trapframe and converting it into a clockframe
one way or another. Now they can just extract the PC and usermode values
directly out of the trapframe and pass it to fooclock().
- Renamed hardclock_process() to hardclock_cpu() as the latter is more
accurate.
- On Alpha, we now run profclock() at hz (profhz == hz) rather than at
the slower stathz.
- On Alpha, for the TurboLaser machines that don't have an 8254
timecounter, call hardclock() directly. This removes an extra
conditional check from every clock interrupt on Alpha on the BSP.
There is probably room for even further pruning here by changing Alpha
to use the simplified timecounter we use on x86 with the lapic timer
since we don't get interrupts from the 8254 on Alpha anyway.
- On x86, clkintr() shouldn't ever be called now unless using_lapic_timer
is false, so add a KASSERT() to that affect and remove a condition
to slightly optimize the non-lapic case.
- Change prototypeof arm_handler_execute() so that it's first arg is a
trapframe pointer rather than a void pointer for clarity.
- Use KCOUNT macro in profclock() to lookup the kernel profiling bucket.
Tested on: alpha, amd64, arm, i386, ia64, sparc64
Reviewed by: bde (mostly)
duplicated anyways) and into a single MI driver. Extend the driver a bit
to implement the bus and PCI kobj interfaces such that other drivers can
attach to it and transparently act as if their parent device is the PCI
bus (for the most part).
means:
o Remove Elf64_Quarter,
o Redefine Elf64_Half to be 16-bit,
o Redefine Elf64_Word to be 32-bit,
o Add Elf64_Xword and Elf64_Sxword for 64-bit entities,
o Use Elf_Size in MI code to abstract the difference between
Elf32_Word and Elf64_Word.
o Add Elf_Ssize as the signed counterpart of Elf_Size.
MFC after: 2 weeks
which existed to cleanup the linux_osname mutex. Now that MTX_SYSINIT()
has grown a SYSUNINIT to destroy mutexes on unload, the extra destroy here
was redundant and resulted in panics in debug kernels.
MFC after: 1 week
Reported by: Goran Gajic ggajic at afrodita dot rcub dot bg dot ac dot yu