We're now more robust against cases of non-sorted and/or non-continuous
numbering of those entries.
Reviewed by: imp, marcel
Approved by: cognet (mentor)
This was introduced as a workaround long time ago for some Alpha firmware
(which is now gone), and actually prevented net_close() to ever be
called.
Certain firmwares (U-Boot) need local shutdown operations to be performed on a
network controller upon transaction end: such platform-specific hooks are
supposed to be called via netif_close() (from within net_close()).
This change effectively reverts the following CVS commit:
sys/boot/common/dev_net.c
revision 1.7
date: 2000/05/13 15:40:46; author: dfr; state: Exp; lines: +2 -1
Only probe network settings on the first open of the network device.
The alpha firmware takes a seriously long time to open the network device
the first time.
Also suppress excessive output while netbooting via loader, unless debugging.
While there, make sys/boot/uboot more style(9) compliant.
Reviewed by: imp
Approved by: cognet (mentor)
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
sched_sleep(). This removes extra thread_lock() acquisition and
allows the scheduler to decide what to do with the static boost.
- Change the priority arguments to cv_* to match sleepq/msleep/etc.
where 0 means no priority change. Catch -1 in cv_broadcastpri() and
convert it to 0 for now.
- Set a flag when sleeping in a way that is compatible with swapping
since direct priority comparisons are meaningless now.
- Add a sysctl to ule, kern.sched.static_boost, that defaults to on which
controls the boost behavior. Turning it off gives better performance
in some workloads but needs more investigation.
- While we're modifying sleepq, change signal and broadcast to both
return with the lock held as the lock was held on enter.
Reviewed by: jhb, peter
uudecode into the main test driver and invoking it just-in-time
within the various tests.
Also, incorporate a number of improvements to the main test support
code that have proven useful on other projects where I've used this
framework.
(left over from when the unified read/write structure was copied
to form separate read and write structures) and eliminate the
pointless initialization of a couple of the unused fields.
Before this patch callback returned result of the last finished call chain.
Now it returns last nonzero result from all call chain results in this request.
As soon as this improvement gives reliable error reporting, it is now possible
to remove dirty workaround in ng_socket, made to return ENOBUFS error statuses
of request-response operations. That workaround was responsible for returning
ENOBUFS errors to completely unrelated requests working at the same time
on socket.
set a default name. If the IRQ is added as a consequence of
configurating the IRQ without there ever being a handler
assigned to it, we will not have a name. This breaks the
fragile intrcnt/intrnames logic.
page stated, thus BSD ar(1) option -q, which was implemented based on
the GNU ar manual page, turns out to be incompatible with GNU ar -q.
This change will make BSD ar(1) -q a *REAL* GNU ar -q:
1. It will update symbol table. (same as unfixed version)
2. It will NOT compare new members spcified in the command line args
with existing members, instead, append them directly.
Reported by: Johannes 5 Joemann <joemann@beefree.free.de>
Reported by: Timothy Bourke <timbob@bigpond.com>
Tested by: Johannes 5 Joemann <joemann@beefree.free.de>
Reviewed by: jkoshy
Approved by: jkoshy (mentor)
Do nextboot -D twice during boot. The first time in rc.d/root which ensures that
we can remove the file as early as possible, but shut up nextboot at this moment
if the operation is failed, because /boot is not necessarily a part of /; the
newly added second run is placed in rc.d/mountlate after all filesystems were
mounted.
Discussed at: -rc@
Suggestions from: brooks, mtm
MFC after: 1 month
we can remove the file as early as possible, but shut up nextboot at this moment
if the operation is failed, because /boot is not necessarily a part of /; the
newly added second run is placed in rc.d/mountlate after all filesystems were
mounted.
Discussed at: -rc@
Suggestions from: brooks, mtm
MFC after: 1 month
state change and reliable error recovery.
o Moved vr_softc structure and relevant macros to header file.
o Use PCIR_BAR macro to get BARs.
o Implemented suspend/resume methods.
o Implemented automatic Tx threshold configuration which will be
activated when it suffers from Tx underrun. Also Tx underrun
will try to restart only Tx path and resort to previous
full-reset(both Rx/Tx) operation if restarting Tx path have failed.
o Removed old bit-banging MII interface. Rhine provides simple and
efficient MII interface. While I'm here show PHY address and PHY
register number when its read/write operation was failed.
o Define VR_MII_TIMEOUT constant and use it in MII access routines.
o Always honor link up/down state reported by mii layers. The link
state information is used in vr_start() to determine whether we
got a valid link.
o Removed vr_setcfg() which is now handled in vr_link_task(), link
state taskqueue handler. When mii layer reports link state changes
the taskqueue handler reprograms MAC to reflect negotiated duplex
settings. Flow-control changes are not handled yet and it should
be revisited when mii layer knows the notion of flow-control.
o Added a new sysctl interface to get statistics of an instance of
the driver.(sysctl dev.vr.0.stats=1)
o Chip name was renamed to reflect the official name of the chips
described in VIA Rhine I/II/III datasheet.
REV_ID_3065_A -> REV_ID_VT6102_A
REV_ID_3065_B -> REV_ID_VT6102_B
REV_ID_3065_C -> REV_ID_VT6102_C
REV_ID_3106_J -> REV_ID_VT6105_A0
REV_ID_3106_S -> REV_ID_VT6105M_A0
The following chip revisions were added.
#define REV_ID_VT6105_B0 0x83
#define REV_ID_VT6105_LOM 0x8A
#define REV_ID_VT6107_A0 0x8C
#define REV_ID_VT6107_A1 0x8D
#define REV_ID_VT6105M_B1 0x94
o Always show chip revision number in device attach. This shall help
identifying revision specific issues.
o Check whether EEPROM reloading is complete by inspecting the state
of VR_EECSR_LOAD bit. This bit is self-cleared after the EEPROM
reloading. Previously vr(4) blindly spins for 200us which may/may
not enough to complete the EEPROM reload.
o Removed if_mtu setup. It's done in ether_ifattach().
o Use our own callout to drive watchdog timer.
o In vr_attach disable further interrupts after reset. For VT6102 or
newer hardwares, diable MII state change interrupt as well because
mii state handling is done by mii layer.
o Add more sane register initialization for VT6102 or newer chips.
- Have NIC report error instead of retrying forever.
- Let hardware detect MII coding error.
- Enable MODE10T mode.
- Enable memory-read-multiple for VT6107.
o PHY address for VT6105 or newer chips is located at fixed address 1.
For older chips the PHY address is stored in VR_PHYADDR register.
Armed with these information, there is no need to re-read
VR_PHYADDR register in miibus handler to get PHY address. This
saves one register access cycle for each MII access.
o Don't reprogram VR_PHYADDR register whenever access to a register
located at a PHY address is made. Rhine fmaily allows reprogramming
PHY address location via VR_PHYADDR register depending on
VR_MIISTAT_PHYOPT bit of VR_MIISTAT register. This used to lead
numerous phantom PHYs attached to miibus during phy probe phase and
driver used to limit allowable PHY address in mii register accessors
for certain chip revisions. This removes one more register access
cycle for each MII access.
o Correctly set VLAN header length.
o bus_dma(9) conversion.
- Limit DMA access to be in range of 32bit address space. Hardware
doesn't support DAC.
- Apply descriptor ring alignment requirements(16 bytes alignment)
- Apply Rx buffer address alignment requirements(4 bytes alignment)
- Apply Tx buffer address alignment requirements(4 bytes alignment)
for Rhine I chip. Rhine II or III has no Tx buffer address
alignment restrictions, though.
- Reduce number of allowable number of DMA segments to 8.
- Removed the atomic(9) used in descriptor ownership managements
as it's job of bus_dmamap_sync(9).
With these change vr(4) should work on all platforms.
o Rhine uses two separated 8bits command registers to control Tx/Rx
MAC. So don't access it as a single 16bit register.
o For non-strict alignment architectures vr(4) no longer require
time-consuming copy operation for received frames to align IP
header. This greatly improves Rx performance on i386/amd64
platforms. However the alignment is still necessary for
strict-alignment platforms(e.g. sparc64). The alignment is handled
in new fuction vr_fixup_rx().
o vr_rxeof() now rejects multiple-segmented(fragmented) frames as
vr(4) is not ready to handle this situation. Datasheet said nothing
about the reason when/why it happens.
o In vr_newbuf() don't set VR_RXSTAT_FIRSTFRAG/VR_RXSTAT_LASTFRAG
bits as it's set by hardware.
o Don't pass checksum offload information to upper layer for
fragmented frames. The hardware assisted checksum is valid only
when the frame is non-fragmented IP frames. Also mark the checksum
is valid for corrupted frames such that upper layers doesn't need
to recompute the checksum with software routine.
o Removed vr_rxeoc(). RxDMA doesn't seem to need to be idle before
sending VR_CMD_RX_GO command. Previously it used to stop RxDMA
first which in turn resulted in long delays in Rx error recovery.
o Rewrote Tx completion handler.
- Always check VR_TXSTAT_OWN bit in status word prior to
inspecting other status bits in the status word.
- Collision counter updates were corrected as VT3071 or newer
ones use different bits to notify collisions.
- Unlike other chip revisions, VT86C100A uses different bit to
indicate Tx underrun. For VT3071 or newer ones, check both
VR_TXSTAT_TBUFF and VR_TXSTAT_UDF bits to see whether Tx
underrun was happend. In case of Tx underrun requeue the failed
frame and restart stalled Tx SM. Also double Tx DMA threshold
size on each failure to mitigate future Tx underruns.
- Disarm watchdog timer only if we have no queued packets,
otherwise don't touch watchdog timer.
o Rewrote interrupt handler.
- status word in Tx/Rx descriptors indicates more detailed error
state required to recover from the specific error. There is no
need to rely on interrupt status word to recover from Tx/Rx
error except PCI bus error. Other event notifications like
statistics counter overflows or link state events will be
handled in main interrupt handler.
- Don't touch VR_IMR register if we are in suspend mode. Touching
the register may hang the hardware if we are in suspended state.
Previously it seems that touching VR_IMR register in interrupt
handler was to work-around panic occurred in system shutdown
stage on SMP systems. I think that work-around would hide
root-cause of the panic and I couldn't reproduce the panic
with multiple attempts on my box.
o While padding space to meet minimum frame size, zero the pad data
in order to avoid possibly leaking sensitive data.
o Rewrote vr_start_locked().
- Don't try to queue packets if number of available Tx descriptors
are short than that of required one.
o Don't reinitialize hardware whenever media configuration is
changed. Media/link state changes are reported from mii layer if
this happens and vr_link_task() will perform necessary changes.
o Don't reinitialize hardware if only PROMISC bit was changed. Just
toggle the PROMISC bit in hardware is sufficient to reflect the
request.
o Rearrganed the IFCAP_POLLING/IFCAP_HWCSUM handling in vr_ioctl().
o Generate Tx completion interrupts for every VR_TX_INTR_THRESH-th
frames. This reduces Tx completion interrupts under heavy network
loads.
o Since vr(4) doesn't request Tx interrupts for every queued frames,
reclaim any pending descriptors not handled in Tx completion
handler before actually firing up watchdog timeouts.
o Added vr_tx_stop()/vr_rx_stop() to wait for the end of active
TxDMA/RxDMA cycles(draining). These routines are used in vr_stop()
to ensure sane state of MAC before releasing allocated Tx/Rx
buffers. vr_link_task() also takes advantage of these functions to
get to idle state prior to restarting Tx/Rx.
o Added vr_tx_start()/vr_rx_start() to restart Rx/Tx. By separating
Rx operation from Tx operation vr(4) no longer need to full-reset
the hardware in case of Tx/Rx error recovery.
o Implemented WOL.
o Added VT6105M specific register definitions. VT6105M has the
following hardware capabilities.
- Tx/Rx IP/TCP/UDP checksum offload.
- VLAN hardware tag insertion/extraction. Due to lack of information
for getting extracted VLAN tag in Rx path, VLAN hardware support
was not implemented yet.
- CAM(Content Addressable Memory) based 32 entry perfect multicast/
VLAN filtering.
- 8 priority queues.
o Implemented CAM based 32 entry perfect multicast filtering for
VT6105M. If number of multicast entry is greater than 32, vr(4)
uses traditional hash based filtering.
o Reflect real Tx/Rx descriptor structure. Previously vr(4) used to
embed other driver (private) data into these structure. This type
of embedding make it hard to work on LP64 systems.
o Removed unused vr_mii_frame structure and MII bit-baning
definitions.
o Added new PCI configuration registers that controls mii operation
and mode selection.
o Reduced number of Tx/Rx descriptors to 128 from 256. From my
testing, increasing number of descriptors above than 64 didn't help
increasing performance at all. Experimentations show 128 Rx
descriptors seems to help a lot reducing Rx FIFO overruns under
high system loads. It seems the poor Tx performance of Rhine
hardwares comes from the limitation of hardware. You wouldn't
satuarte the link with vr(4) no matter how fast CPU/large number of
descriptors are used.
o Added vr_statistics structure to hold various counter values.
No regression was reported but one variant of Rhine III(VT6105M)
found on RouterBOARD 44 does not work yet(Reported by Milan Obuch).
I hope this would be resolved in near future.
I'd like to say big thanks to Mike Tancsa who kindly donated a Rhine
hardware to me. Without his enthusiastic testing and feedbacks
overhauling vr(4) never have been possible. Also thanks to Masayuki
Murayama who provided some good comments on the hardware's internals.
This driver is result of combined effort of many users who provided
many feedbacks so I'd like to say special thanks to them.
Hardware donated by: Mike Tancsa (mike AT sentex dot net)
Reviewed by: remko (initial version)
Tested by: Mike Tancsa(x86), JoaoBR ( joao AT matik DOT com DOT br )
Marcin Wisnicki ( mwisnicki+freebsd AT gmail DOT com )
Stefan Ehmann ( shoesoft AT gmx DOT net )
Florian Smeets ( flo AT kasimir DOT com )
Phil Oleson ( oz AT nixil DOT net )
Larry Baird ( lab AT gta DOT com )
Milan Obuch ( freebsd-current AT dino DOT sk )
remko (initial version)