more generic, but that didn't actually happen. Since the feature to
switch backends (and historically this means from DDB to GDB) is
important, make sure people can do just that until such the generic
mechanism actually sees the light of day.
Suggested by: rwatson@
changing the backend from outside the KDB frontend. For example from
within a backend. Rewrite kdb_sysctl_current to make use of this
function as well.
in soreceive() after removing an MT_SONAME mbuf from the head of the
socket buffer.
When processing MT_CONTROL mbufs in soreceive(), first remove all of
the MT_CONTROL mbufs from the head of the socket buffer to a local
mbuf chain, then feed them into dom_externalize() as a set, which
both avoids thrashing the socket buffer lock when handling multiple
control mbufs, and also avoids races with other threads acting on
the socket buffer when the socket buffer mutex is released to enter
the externalize code. Existing races that might occur if the protocol
externalize method blocked during processing have also been closed.
Now that we synchronize socket buffer and stack state following
modifications to the socket buffer, turn the manual synchronization
that previously followed control mbuf processing with a set of
assertions. This can eventually be removed.
The soreceive() code is now substantially more MPSAFE.
the head of the mbuf chains in a socket buffer, re-synchronizes the
cache pointers used to optimize socket buffer appends. This will be
used by soreceive() before dropping socket buffer mutexes to make sure
a consistent version of the socket buffer is visible to other threads.
While here, update copyright to account for substantial rewrite of much
socket code required for fine-grained locking.
locking on 'nextrecord' and concerns regarding potentially inconsistent
or stale use of socket buffer or stack fields if they aren't carefully
synchronized whenever the socket buffer mutex is released. Document
that the high-level sblock() prevents races against other readers on
the socket.
Also document the 'type' logic as to how soreceive() guarantees that
it will only return one of normal data or inline out-of-band data.
This also fixes the (runtime) breakage introduced in the previous
commit that was the result of a botched merge. This hasn't even
been compile-tested...
a problem that could also be fixed differently without reverting previous
attempts to fix DELAY while the debugger is active (rev 1.204). The bug
was that the i8254 implements a countdown timer, while for (k)db_active
a countup timer was implemented. This resulted in premature termination
and consequently the breakage of DELAY. The fix (relative to rev 1.211)
is to implement a countdown timer for the kdb_active case. As such the
ability to step clock initialization is preserved and DELAY does what is
expected of it.
Blushed: bde :-)
Submitted by: bde
name in the debug.kdb.current sysctl. All other dereferences are
properly guarded, but this one was overlooked.
Reported by: Morten Rodal (morten at rodal dot no)
o Sources that are shared between kernel and userland and that may
contain references to DDB or any of its functions may need to
know this.
o Userland tools may include <machine/gdb_machdep.h> from now on.
Think kernel debugger...
o The kernel core file now contains the TID of the kernel thread
that made the dump.
db_elf.c, db_kld.c: The new KDB backend supports both at the same time.
db_sysctl.c: The functionality has been moved to sys/kern/subr_kdb.c.
db_trap.c: The DDB entry point has been moved to sys/ddb/db_main.c.
o Rename WITNESS_DDB to WITNESS_KDB. In the new world order KDB is the
acronym to use for debugging related code. The DDB option is used
to enable the DDB debugger backend only.
o Likewise, rename DDB_TRACE to KDB_TRACE, rename DDB_UNATTENDED to
KDB_UNATTENDED and rename SC_HISTORY_DDBKEY to SC_HISTORY_KDBKEY.
o Remove DDB_NOKLDSYM. The new DDB backend supports pre-linker symbol
lookups as well as KLD symbol lookups at the same time.
o Remove GDB_REMOTE_CHAT. The GDB protocol hacks to allow this are
FreeBSD specific. At the same time, the GDB protocol has packets
for console output.
actually work.
Make the PCI and PCCARD attachments provide a bus_get_resource_list()
method so that resource listing for PCCARD works. PCCARD does not
have a bus_get_resource_list() method (yet), so I faked up the
resource list management in if_ndis_pccard.c, and added
bus_get_resource_list() methods to both if_ndis_pccard.c and if_ndis_pci.c.
The one in the PCI attechment just hands off to the PCI bus code.
The difference is transparent to the NDIS resource handler code.
Fixed ndis_open_file() so that opening files which live on NFS
filesystems work: pass an actual ucred structure to VOP_GETATTR()
(NFS explodes if the ucred structure is NOCRED).
Make NdisMMapIoSpace() handle mapping of PCMCIA attribute memory
resources correctly.
Turn subr_ndis.c:my_strcasecmp() into ndis_strcasecmp() and export
it so that if_ndis_pccard.c can use it, and junk the other copy
of my_strcasecmp() from if_ndis_pccard.c.
Most of the changes are a direct result of adding thread awareness.
Typically, DDB_REGS is gone. All registers are taken from the
trapframe and backtraces use the PCB based contexts. DDB_REGS was
defined to be a trapframe on all platforms anyway.
Thread awareness introduces the following new commands:
thread X switch to thread X (where X is the TID),
show threads list all threads.
The backtrace code has been made more flexible so that one can
create backtraces for any thread by giving the thread ID as an
argument to trace.
With this change, ia64 has support for breakpoints.
o Make debugging code conditional upon KDB instead of DDB.
o Call kdb_enter() instead of Debugger().
o Remove implementation of Debugger().
o Check kdb_active instead of db_active.
o Call kdb_trap() according to the new world order.
o ksym_start and ksym_end changed type to vm_offset_t.
o Make debugging support conditional upon KDB instead of DDB.
o Call kdb_enter() instead of breakpoint().
o Remove implementation of Debugger().
o Call kdb_trap() according to the new world order.
unwinder:
o s/db_active/kdb_active/g
o Various s/ddb/kdb/g
o Add support for unwinding from the PCB as well as the trapframe.
Abuse a spare field in the special register set to flag whether
the PCB was actually constructed from a trapframe so that we can
make the necessary adjustments.
md_var.h:
o Add RSE convenience macros.
o Add ia64_bsp_adjust() to add or subtract from BSP while taking
NaT collections into account.
o Make debugging code conditional upon KDB instead of DDB.
o Declare ksym_start and ksym_end as extern and initialize them.
This was previously and bogusly handled by DDB itself.
o Call kdb_enter() instead of Debugger().
o Remove implementation of Debugger().
o Make debugging support conditional upon KDB instead of DDB.
o Remove implementation of Debugger().
o Don't make setjump() and longjump() conditional upon DDB.
o s/ddb_on_nmi/kdb_on_nmi/g
o Call kdb_reenter() when kdb_active is non-zero. Call kdb_trap()
otherwise.
o Make debugging support conditional upon KDB instead of DDB.
o Call kdb_trap() according to the new world order.
o Kill the NO_SIO option completely.
o Respect the boot_gdb environment variable.
o Don't make debug specific kernel options conditional.
o Remove implementation of Debugger().
it's in the way even more. Basicly: remove all alpha specific console
support from gfb(4), sio(4) and syscons(4). Rewrite the alpha console
initialization to be identical to all other platforms. In a nutshell:
call cninit().
The platform specific code now only sets or clears RB_SERIAL and thus
automaticly causes the right console to be selected.
sio.c:
o Replace the remote GDB hacks and use the GDB debug port interface
instead.
o Make debugging code conditional upon KDB instead of DDB.
o Call kdb_alt_break() instead of db_alt_break().
o Call kdb_enter() instead of breakpoint().
o Remove the ugly compatibility of using the console as the debug
port.
debugger is not active. The fixes breakages of DELAY() when
running in the debugger, because not calling getit() when the
debugger is active yields a DELAY that doesn't.
o s/ddb_on_nmi/kdb_on_nmi/g
o Rename sysctl machdep.ddb_on_nmi to machdep.kdb_on_nmi
o Make debugging support conditional upon KDB instead of DDB.
o Call kdb_reenter() when kdb_active is non-zero.
o Call kdb_trap() to enter the debugger when not already active.
o Update comments accordingly.
o Remove misplaced prototype of kdb_trap().
associated with a PR_ADDR protocol, make sure to update the m_nextpkt
pointer of the new head mbuf on the chain to point to the next record.
Otherwise, when we release the socket buffer mutex, the socket buffer
mbuf chain may be in an inconsistent state.
o Make debugging code conditional upon KDB instead of DDB.
o s/WITNESS_DDB/WITNESS_KDB/g
o s/witness_ddb/witness_kdb/g
o Rename the debug.witness_ddb sysctl to debug.witness_kdb.
o Call kdb_backtrace() instead of backtrace().
o Call kdb_enter() instead Debugger().
o Assert kdb_active instead of db_active.
o Make debugging code conditional upon KDB instead of DDB.
o Call kdb_enter() instead of Debugger().
o Call kdb_backtrace() instead of db_print_backtrace() or backtrace().
kern_mutex.c:
o Replace checks for db_active with checks for kdb_active and make
them unconditional.
kern_shutdown.c:
o s/DDB_UNATTENDED/KDB_UNATTENDED/g
o s/DDB_TRACE/KDB_TRACE/g
o Save the TID of the thread doing the kernel dump so the debugger
knows which thread to select as the current when debugging the
kernel core file.
o Clear kdb_active instead of db_active and do so unconditionally.
o Remove backtrace() implementation.
kern_synch.c:
o Call kdb_reenter() instead of db_error().
o Make debugging code conditional upon KDB instead of DDB.
o Call kdb_enter() instead of Debugger().
o Remove local (static) variable in_debugger. Use kdb_active instead.
o Call kdb_enter() instead of breakpoint().
o Call kdb_alt_break() instead of db_alt_break().
o Make debugging code conditional upon KDB instead of DDB.
o Make debugging code conditional upon KDB instead of DDB.
o Call kdb_alt_break() instead of db_alt_break().
o Call kdb_enter() instead of breakpoint().
o Call kdb_enter() instead of Debugger().
o Don't make such calls conditional upon KDB instead of DDB because
they're already conditional upon EN_DEBUG.
o Use kdb_alt_break() to handle the alternate break sequence instead
of handcoding it here.
o Remove GDB kluges to make this driver work with the pre-KDB remote
GDB code.
o Call kdb_enter() instead of Debugger().
Note that with this commit the dcons(4) driver cannot be used for
remote debugging anymore. This driver has to use the new GDB debug
port interface instead. Such has not been done yet.
a PCB from a trapframe for purposes of unwinding the stack. The PCB
is used as the thread context and all but the thread that entered the
debugger has a valid PCB.
This function can also be used to create a context for the threads
running on the CPUs that have been stopped when the debugger got
entered. This however is not done at the time of this commit.
in particular not without removing the options they replace or in the
proper location in this file. The purpose of this commit is to make it
possible to commit changes in parts without causing massive build
breakages. At least, that's the intend. I have no idea if it actually
works out as I hope...
in which multiple (presumably different) debugger backends can be
configured and which provides basic services to those backends.
Besides providing services to backends, it also serves as the single
point of contact for any and all code that wants to make use of the
debugger functions, such as entering the debugger or handling of the
alternate break sequence. For this purpose, the frontend has been
made non-optional.
All debugger requests are forwarded or handed over to the current
backend, if applicable. Selection of the current backend is done by
the debug.kdb.current sysctl. A list of configured backends can be
obtained with the debug.kdb.available sysctl. One can enter the
debugger by writing to the debug.kdb.enter sysctl.
backend improves over the old GDB support in the following ways:
o Unified implementation with minimal MD code.
o A simple interface for devices to register themselves as debug
ports, ala consoles.
o Compression by using run-length encoding.
o Implements GDB threading support.
Add copyiniov() which copies a struct iovec array in from userland into
a malloc'ed struct iovec. Caller frees.
Change uiofromiov() to malloc the uio (caller frees) and name it
copyinuio() which is more appropriate.
Add cloneuio() which returns a malloc'ed copy. Caller frees.
Use them throughout.
assigning a pointer to the list and then dereferencing the pointer as a
second step. When the first spin lock is acquired, curthread is not in
a critical section so it may be preempted and would end up using another
CPUs lock list instead of its own.
When this code was in witness_lock() this sequence was safe as curthread
was in a critical section already since witness_lock() is called after the
lock is acquired.
Tested by: Daniel Lang dl at leo.org
In this mode you can setup even very small stripe size and you can be
sure that only one I/O request will be send to every disks in stripe.
It consumes some more memory, but if allocation fails, it will fall
back to "ECONOMIC" mode.
It is about 10 times faster for small stripe size than "ECONOMIC" mode
and other RAID0 implementations. It is even recommended to use this
mode and small stripe size, so our requests are always splitted.
One can still use "ECONOMIC" mode by setting kern.geom.stripe.fast to 0.
It is also possible to setup maximum memory which "FAST" mode can consume,
by setting kern.geom.stripe.maxmem from /boot/loader.conf.
one go before returning. This avoids calling uiomove() while holding
allproc_lock.
Don't adjust uio->uio_offset manually, uiomove() does that for us.
Don't drop allproc_lock before calling panic().
Suggested by: alfred
so setfault would return correctly when a page fault was invalid
(e.g. a syscall with a bad parameter).
This caused an endless DSI loop, seen when running sendmail which
does a setlogin() call with a NULL pointer.
- introduce KTR_SYSC tracing. expose the syscallnames[] array to
make the tracing more readable.
- Avoid an additional lock acquire/release when leaving xl_intr(), by
changing xl_start*() to xl_start*_locked(), and calling the appropriate
routine by chip revision (as the DMA descriptors are different).
- Simplify the appropriate routines now that they are called with the
lock held.
This should save a significant amount of CPU cycles spent on servicing
each interrupt for both UP and SMP whilst remaining MPSAFE.
Tested by: rwatson
- Add *_locked() entry points as needed to avoid unnecessary lock thrashing.
- Use these entry points wisely.
- Only acquire the lock once when servicing an interrupt.
- Check 'suspended' on interrupt to avoid racing detach.
- Correct a mis-spelled comment.
- Don't take the lock in vr_reset() to avoid lock thrashing in attach.
- Comment this.
Reviewed by: -net (silence)
- Avoid unnecessary re-acquisition elsewhere by adding *_locked()
entry points as needed.
- Correct locking for the DEVICE_POLLING case.
- Hold the driver lock for the entire duration of interrupt servicing,
to avoid unneeded, expensive re-acquisition; use *_locked() entry
points as needed.
Reviewed by: -net (silence)
bootp -> BOOTP
bootp.nfsroot -> BOOTP_NFSROOT
bootp.nfsv3 -> BOOTP_NFSV3
bootp.compat -> BOOTP_COMPAT
bootp.wired_to -> BOOTP_WIRED_TO
- i.e. back out the previous commit. It's already possible to
pxeboot(8) with a GENERIC kernel.
Pointed out by: dwmalone
takes an argument to specify if it should preempt or not. Don't preempt
when sched_add_internal() is called from kseq_idled() or kseq_assign()
as in those cases we are about to call mi_switch() anyways. Also, doing
so during the first context switch on an AP leads to a NULL pointer deref
because curthread is NULL.
- Reenable preemption for ULE.
Submitted by: Taku YAMAMOTO taku at tackymt.homeip.net
has outlined which break numbers are software interrupts, debugger
breakpoints and ABI specific breaks. We mostly treated all break
numbers we didn't care about as debugger breakpoints.
When we orphan/wither a provider, an attached geom+consumer could
end up being withered as a result and it may be in front of us in
the normal object scanning order so we need to do multi-pass. On
the other hand, there may be withering stuff we can't get rid off
(yet), so we need to keep track of both the existence of withering
stuff and if there is more we can do at this time.
BOOTP -> bootp
BOOTP_NFSROOT -> bootp.nfsroot
BOOTP_NFSV3 -> bootp.nfsv3
BOOTP_COMPAT -> bootp.compat
BOOTP_WIRED_TO -> bootp.wired_to
This lets you PXE boot with a GENERIC kernel by putting this sort of thing
in loader.conf:
bootp="YES"
bootp.nfsroot="YES"
bootp.nfsv3="YES"
bootp.wired_to="bge1"
or even setting the variables manually from the OK prompt.
work on a G5 (no BAT registers) or on PearPC (dBAT3 used for mapping
the framebuffer and BATs not re-inited on OpenFirmware calls).
It also hid a number of bugs.
jumping to the kernel. Another bug exposed by removing the
1:1 BAT mapping. Sparc64 doesn't do this either.
Compile tested on: panther (sparc64). Code built, but not used, on sparc64.
of the 256Mb 1:1 BAT mapping exposed this as copying into memory that
hadn't been claimed from OpenFirmware.
compiled-tested on: panther (sparc64). Code built, but not used, on sparc64
step in making this driver more attachment neutral. Others plan on
adding acpi front ends.
Still need to cleanup the MI part of the driver because it isn't as
bus independent as it could be.
This should allow us to more easily break out the acpi and 'legacy pc'
front ends as well (so only the bus front end would touch rtc, for
example).
This isn't a great separation, since isa dma routines are still called
from the MI code, but it is a start.
- In subr_ndis.c:ndis_allocate_sharemem(), create the busdma tags
used for shared memory allocations with a lowaddr of 0x3E7FFFFF.
This forces the buffers to be mapped to physical/bus addresses within
the first 1GB of physical memory. It seems that at least one card
(Linksys Instant Wireless PCI V2.7) depends on this behavior. I
don't know if this is a hardware restriction, or if the NDIS
driver for this card is truncating the addresses itself, but using
physical/bus addresses beyong the 1GB limit causes initialization
failures.
- Create am NDIS_INITIALIZED() macro in if_ndisvar.h and use it in
if_ndis.c to test whether the device has been initialized rather
than checking for the presence of the IFF_UP flag in if_flags.
While debugging the previous problem, I noticed that bringing
up the device would always produce failures from ndis_setmulti().
It turns out that the following steps now occur during device
initialization:
- IFF_UP flag is set in if_flags
- ifp->if_ioctl() called with SIOCSIFADDR (which we don't handle)
- ifp->if_ioctl() called with SIOCADDMULTI
- ifp->if_ioctl() called with SIOCADDMULTI (again)
- ifp->if_ioctl() called with SIOCADDMULTI (yet again)
- ifp->if_ioctl() called with SIOCSIFFLAGS
Setting the receive filter and multicast filters can only be done
when the underlying NDIS driver has been initialized, which is done
by ifp->if_init(). However, we don't call ifp->if_init() until
ifp->if_ioctl() is called with SIOCSIFFLAGS and IFF_UP has been
set. It appears that now, the network stack tries to add multicast
addresses to interface's filter before those steps occur. Normally,
ndis_setmulti() would trap this condition by checking for the IFF_UP
flag, but the network code has in fact set this flag already, so
ndis_setmulti() is fooled into thinking the interface has been
initialized when it really hasn't.
It turns out this is usually harmless because the ifp->if_init()
routine (in this case ndis_init()) will set up the multicast
filter when it initializes the hardware anyway, and the underlying
routines (ndis_get_info()/ndis_set_info()) know that the driver/NIC
haven't been initialized yet, but you end up spurious error messages
on the console all the time.
Something tells me this new behavior isn't really correct. I think
the intention was to fix it so that ifp->if_init() is only called
once when we ifconfig an interface up, but the end result seems a
little bogus: the change of the IFF_UP flag should be propagated
down to the driver before calling any other ioctl() that might actually
require the hardware to be up and running.