Commit Graph

116 Commits

Author SHA1 Message Date
wpaul
966185d797 Fix two problems:
- In subr_ndis.c:ndis_allocate_sharemem(), create the busdma tags
  used for shared memory allocations with a lowaddr of 0x3E7FFFFF.
  This forces the buffers to be mapped to physical/bus addresses within
  the first 1GB of physical memory. It seems that at least one card
  (Linksys Instant Wireless PCI V2.7) depends on this behavior. I
  don't know if this is a hardware restriction, or if the NDIS
  driver for this card is truncating the addresses itself, but using
  physical/bus addresses beyong the 1GB limit causes initialization
  failures.

- Create am NDIS_INITIALIZED() macro in if_ndisvar.h and use it in
  if_ndis.c to test whether the device has been initialized rather
  than checking for the presence of the IFF_UP flag in if_flags.
  While debugging the previous problem, I noticed that bringing
  up the device would always produce failures from ndis_setmulti().
  It turns out that the following steps now occur during device
  initialization:

	- IFF_UP flag is set in if_flags
	- ifp->if_ioctl() called with SIOCSIFADDR (which we don't handle)
	- ifp->if_ioctl() called with SIOCADDMULTI
	- ifp->if_ioctl() called with SIOCADDMULTI (again)
	- ifp->if_ioctl() called with SIOCADDMULTI (yet again)
	- ifp->if_ioctl() called with SIOCSIFFLAGS

  Setting the receive filter and multicast filters can only be done
  when the underlying NDIS driver has been initialized, which is done
  by ifp->if_init(). However, we don't call ifp->if_init() until
  ifp->if_ioctl() is called with SIOCSIFFLAGS and IFF_UP has been
  set. It appears that now, the network stack tries to add multicast
  addresses to interface's filter before those steps occur. Normally,
  ndis_setmulti() would trap this condition by checking for the IFF_UP
  flag, but the network code has in fact set this flag already, so
  ndis_setmulti() is fooled into thinking the interface has been
  initialized when it really hasn't.

  It turns out this is usually harmless because the ifp->if_init()
  routine (in this case ndis_init()) will set up the multicast
  filter when it initializes the hardware anyway, and the underlying
  routines (ndis_get_info()/ndis_set_info()) know that the driver/NIC
  haven't been initialized yet, but you end up spurious error messages
  on the console all the time.

Something tells me this new behavior isn't really correct. I think
the intention was to fix it so that ifp->if_init() is only called
once when we ifconfig an interface up, but the end result seems a
little bogus: the change of the IFF_UP flag should be propagated
down to the driver before calling any other ioctl() that might actually
require the hardware to be up and running.
2004-07-07 17:46:30 +00:00
wpaul
923c7351dd Add another 5.2.1 source compatibility tweak: acquire Giant before calling
kthread_exit() if FreeBSD_version is old enough.
2004-06-07 01:22:48 +00:00
des
95045d6bb3 Take advantage of the dev sysctl tree.
Approved by:	wpaul
2004-06-04 22:24:46 +00:00
wpaul
ea3e28a2d3 Grrr. Really check subr_ndis.c in this time. (fixed my_strcasecmp()) 2004-06-04 04:45:38 +00:00
wpaul
a4fd26fba2 Explicitly #include <sys/module.h> instead of depending on <sys/kernel.h>
to do it for us.
2004-06-01 23:24:17 +00:00
wpaul
24d0dec0e8 Fix build with ndisulator: Add prototype for my_strcasecmp(). 2004-05-29 22:34:08 +00:00
wpaul
86ad4bc572 In subr_ndis.c, when searching for keys in our make-pretend registry,
make the key name matching case-insensitive. There are some drivers
and .inf files that have mismatched cases, e.g. the driver will look
for "AdhocBand" whereas the .inf file specifies a registry key to be
created called "AdHocBand." The mismatch is probably a typo that went
undetected (so much for QA), but since Windows seems to be case-insensitive,
we should be too.

In if_ndis.c, initialize rates and channels correctly so that specify
frequences correctly when trying to set channels in the 5Ghz band, and
so that 802.11b rates show up for some a/b/g cards (which otherwise
appear to have no 802.11b modes).

Also, when setting OID_802_11_CONFIGURATION in ndis_80211_setstate(),
provide default values for the beacon interval, ATIM window and dwelltime.
The Atheros "Aries" driver will crash if you try to select ad-hoc mode
and leave the beacon interval set to 0: it blindly uses this value and
does a division by 0 in the interrupt handler, causing an integer
divide trap.
2004-05-29 06:41:17 +00:00
wpaul
a7f0f62fc0 Small timer cleanups:
- Use the dh_inserted member of the dispatch header in the Windows
  timer structure to indicate that the timer has been "inserted into
  the timer queue" (i.e. armed via timeout()). Use this as the value
  to return to the caller in KeCancelTimer(). Previously, I was using
  callout_pending(), but you can't use that with timeout()/untimeout()
  without creating a potential race condition.

- Make ntoskrnl_init_timer() just a wrapper around ntoskrnl_init_timer_ex()
  (reduces some code duplication).

- Drop Giant when entering if_ndis.c:ndis_tick() and
  subr_ntorkrnl.c:ntoskrnl_timercall(). At the moment, I'm forced to
  use system callwheel via timeout()/untimeout() to handle timers rather
  than the callout API (struct callout is too big to fit inside the
  Windows struct KTIMER, so I'm kind of hosed). Unfortunately, all
  the callouts in the callwhere are not marked as MPSAFE, so when
  one of them fires, it implicitly acquires Giant before invoking the
  callback routine (and releases it when it returns). I don't need to
  hold Giant, but there's no way to stop the callout code from acquiring
  it as long as I'm using timeout()/untimeout(), so for now we cheat
  by just dropping Giant right away (and re-acquiring it right before
  the routine returns so keep the callout code happy). At some point,
  I will need to solve this better, but for now this should be a suitable
  workaround.
2004-04-30 20:51:55 +00:00
wpaul
6bc1da1c05 Ok, _really_ fix the Intel 2100B Centrino deadlock problems this time.
(I hope.)

My original instinct to make ndis_return_packet() asynchronous was correct.
Making ndis_rxeof() submit packets to the stack asynchronously fixes
one recursive spinlock acquisition, but it's also possible for it to
happen via the ndis_txeof() path too. So:

- In if_ndis.c, revert ndis_rxeof() to its old behavior (and don't bother
  putting ndis_rxeof_serial() back since we don't need it anymore).

- In kern_ndis.c, make ndis_return_packet() submit the call to the
  MiniportReturnPacket() function to the "ndis swi" thread so that
  it always happens in another context no matter who calls it.
2004-04-22 07:08:39 +00:00
wpaul
d1e72fc336 Correct the AT_DISPATCH_LEVEL() macro to match earlier changes. 2004-04-20 02:27:38 +00:00
wpaul
b40a64ce55 Try to handle recursive attempts to raise IRQL to DISPATCH_LEVEL better
(among other things).
2004-04-19 22:39:04 +00:00
wpaul
a98d8ced54 In ntoskrnl_unlock_dpc(), use atomic_store instead of atomic_cmpset
to give up the spinlock.

Suggested by: bde
2004-04-18 18:38:59 +00:00
wpaul
1ea56deba6 - Use memory barrier with atomic operations in ntoskrnl_lock_dpc() and
ntoskrnl_unlocl_dpc().
- hal_raise_irql(), hal_lower_irql() and hal_irql() didn't work right
  on SMP (priority inheritance makes things... interesting). For now,
  use only two states: DISPATCH_LEVEL (PI_REALTIME) and PASSIVE_LEVEL
  (everything else). Tested on a dual PIII box.
- Use ndis_thsuspend() in ndis_sleep() instead of tsleep(). (I added
  ndis_thsuspend() and ndis_thresume() to replace kthread_suspend()
  and kthread_resume(); the former will preserve a thread's priority
  when it wakes up, the latter will not.)
- Change use of tsleep() in ndis_stop_thread() to prevent priority
  change on wakeup.
2004-04-16 00:04:28 +00:00
wpaul
9765d24df6 Continue my efforts to imitate Windows as closely as possible by
attempting to duplicate Windows spinlocks. Windows spinlocks differ
from FreeBSD spinlocks in the way they block preemption. FreeBSD
spinlocks use critical_enter(), which masks off _all_ interrupts.
This prevents any other threads from being scheduled, but it also
prevents ISRs from running. In Windows, preemption is achieved by
raising the processor IRQL to DISPATCH_LEVEL, which prevents other
threads from preempting you, but does _not_ prevent device ISRs
from running. (This is essentially what Solaris calls dispatcher
locks.) The Windows spinlock itself (kspin_lock) is just an integer
value which is atomically set when you acquire the lock and atomically
cleared when you release it.

FreeBSD doesn't have IRQ levels, so we have to cheat a little by
using thread priorities: normal thread priority is PASSIVE_LEVEL,
lowest interrupt thread priority is DISPATCH_LEVEL, highest thread
priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is
HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL
matter to us. The immediate benefit of all this is that I no
longer have to rely on a mutex pool.

Now, I'm sure many people will be seized by the urge to criticize
me for doing an end run around our own spinlock implementation, but
it makes more sense to do it this way. Well, it does to me anyway.

Overview of the changes:

- Properly implement hal_lock(), hal_unlock(), hal_irql(),
  hal_raise_irql() and hal_lower_irql() so that they more closely
  resemble their Windows counterparts. The IRQL is determined by
  thread priority.

- Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do
  in Windows, which is to atomically set/clear the lock value. These
  routines are designed to be called from DISPATCH_LEVEL, and are
  actually half of the work involved in acquiring/releasing spinlocks.

- Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers
  that allow us to call a _fastcall function in spite of the fact
  that our version of gcc doesn't support __attribute__((__fastcall__))
  yet. The macros take 1, 2 or 3 arguments, respectively. We need
  to call hal_lock(), hal_unlock() etc... ourselves, but can't really
  invoke the function directly. I could have just made the underlying
  functions native routines and put _fastcall wrappers around them for
  the benefit of Windows binaries, but that would create needless bloat.

- Remove ndis_mtxpool and all references to it. We don't need it
  anymore.

- Re-implement the NdisSpinLock routines so that they use hal_lock()
  and friends like they do in Windows.

- Use the new spinlock methods for handling lookaside lists and
  linked list updates in place of the mutex locks that were there
  before.

- Remove mutex locking from ndis_isr() and ndis_intrhand() since they're
  already called with ndis_intrmtx held in if_ndis.c.

- Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif.
  It turns out there are some drivers which stupidly free the memory
  in which their spinlocks reside before calling ndis_destroy_lock()
  on them (touch-after-free bug). The ADMtek wireless driver
  is guilty of this faux pas. (Why this doesn't clobber Windows I
  have no idea.)

- Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into
  real functions instead of aliasing them to NdisAcaquireSpinLock()
  and NdisReleaseSpinLock(). The Dpr routines use
  KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(),
  which acquires the lock without twiddling the IRQL.

- In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some
  drivers may call the status/status done callbacks as the result of
  setting an OID: ndis_80211_getstate() gets OIDs, which means we
  might cause the driver to recursively access some of its internal
  structures unexpectedly. The ndis_ticktask() routine will call
  ndis_80211_getstate() for us eventually anyway.

- Fix the channel setting code a little in ndis_80211_setstate(),
  and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft
  spec says you're not supposed to twiddle the channel in BSS mode;
  I may need to enforce this later.) This fixes the problems I was
  having with the ADMtek adm8211 driver: we were setting the channel
  to a non-standard default, which would cause it to fail to associate
  in BSS mode.

- Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when
  calling certain miniport routines, per the Microsoft documentation.

I think that's everything. Hopefully, other than fixing the ADMtek
driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
wpaul
52d50449a1 In ndis_convert_res(), initialize the head of our temporary list
before calling BUS_GET_RESOURCE_LIST(). Previously, the list head would
only be initialized if BUS_GET_RESOURCE_LIST() succeeded; it needs to
be initialized unconditionally so that the list cleanup code won't
trip over potential stack garbage.
2004-04-07 17:02:55 +00:00
wpaul
e8bf917ce6 - The MiniportReset() function can return NDIS_STATUS_PENDING, in which
case we should wait for the resetdone handler to be called before
  returning.

- When providing resources via ndis_query_resources(), uses the
  computed rsclen when using bcopy() to copy out the resource data
  rather than the caller-supplied buffer length.

- Avoid using ndis_reset_nic() in if_ndis.c unless we really need
  to reset the NIC because of a problem.

- Allow interrupts to be fielded during ndis_attach(), at least
  as far as allowing ndis_isr() and ndis_intrhand() to run.

- Use ndis_80211_rates_ex when probing for supported rates. Technically,
  this isn't supposed to work since, although Microsoft added the extended
  rate structure with the NDIS 5.1 update, the spec still says that
  the OID_802_11_SUPPORTED_RATES OID uses ndis_80211_rates. In spite of
  this, it appears some drivers use it anyway.

- When adding in our guessed rates, check to see if they already exist
  so that we avoid any duplicates.

- Add a printf() to ndis_open_file() that alerts the user when a
  driver attempts to open a file under /compat/ndis.

With these changes, I can get the driver for the SMC 2802W 54g PCI
card to load and run. This board uses a Prism54G chip. Note that in
order for this driver to work, you must place the supplied smc2802w.arm
firmware image under /compat/ndis. (The firmware is not resident on
the device.)

Note that this should also allow the 3Com 3CRWE154G72 card to work
as well; as far as I can tell, these cards also use a Prism54G chip.
2004-04-05 08:26:52 +00:00
wpaul
163b236504 Add missing cprd_flags member to partial resource structure in
resource_var.h.

In kern_ndis.c:ndis_convert_res(), fill in the cprd_flags and
cprd_sharedisp fields as best we can.

In if_ndis.c:ndis_setmulti(), don't bother updating the multicast
filter if our multicast address list is empty.

Add some missing updates to ndis_var.h and ntoskrnl_var.h that I
forgot to check in when I added the KeDpc stuff.
2004-03-29 02:15:29 +00:00
wpaul
b41d925167 Apparently, some atheros drivers want rand(), so implement it (in terms
of random()).

Requested by: juli
Bribe offered: tacos
2004-03-27 20:38:43 +00:00
wpaul
2c5e07e637 - In subr_ndis.c:ndis_init_event(), initialize events as notification
objects rather than synchronization objects. When a sync object is
  signaled, only the first thread waiting on it is woken up, and then
  it's automatically reset to the not-signaled state. When a
  notification object is signaled, all threads waiting on it will
  be woken up, and it remains in the signaled state until someone
  resets it manually. We want the latter behavior for NDIS events.

- In kern_ndis.c:ndis_convert_res(), we have to create a temporary
  copy of the list returned by BUS_GET_RESOURCE_LIST(). When the PCI
  bus code probes resources for a given device, it enters them into
  a singly linked list, head first. The result is that traversing
  this list gives you the resources in reverse order. This means when
  we create the Windows resource list, it will be in reverse order too.
  Unfortunately, this can hose drivers for devices with multiple I/O
  ranges of the same type, like, say, two memory mapped I/O regions (one
  for registers, one to map the NVRAM/bootrom/whatever). Some drivers
  test the range size to figure out which region is which, but others
  just assume that the resources will be listed in ascending order from
  lowest numbered BAR to highest. Reversing the order means such drivers
  will choose the wrong resource as their I/O register range.

  Since we can't traverse the resource SLIST backwards, we have to
  make a temporary copy of the list in the right order and then build
  the Windows resource list from that. I suppose we could just fix
  the PCI bus code to use a TAILQ instead, but then I'd have to track
  down all the consumers of the BUS_GET_RESOURCE_LIST() and fix them
  too.
2004-03-25 18:31:52 +00:00
wpaul
57efe0d11e - In kern_ndis.c, implement ndis_unsched(), the complement to ndis_sched(),
which pulls a job off a thread work queue (assuming it hasn't run yet).
  This is needed for KeRemoveQueueDpc().

- In subr_ntoskrnl.c, implement KeInsertQueueDpc() and KeRemoveQueueDpc(),
  to go with KeInitializeDpc() to round out the API. Also change the
  KeTimer implementation to use this API instead of the private
  timer callout scheduler. Functionality of the timer API remains
  unchanged, but we get a couple new Windows kernel API routines and
  more closely imitate the way thing works in Windows. (As of yet
  I haven't encountered any drivers that use KeInsertQueueDpc() or
  KeRemoveQueueDpc(), but it doesn't hurt to have them.)
2004-03-25 08:23:08 +00:00
wpaul
0cae7408dd Remove another case of grabbing Giant before doing a kthread_exit()
which is now no longer needed.
2004-03-22 22:46:22 +00:00
wpaul
531ac9bc54 I'm a dumbass: the test in the MOD_SHUTDOWN case in ndis_modevent()
that checks to see if any devices are still in the devlist was reversed.
2004-03-22 18:34:37 +00:00
wpaul
e7b058478d The Intel 2200BG NDIS driver does an alloca() of about 5000 bytes
when it associates with a net. Because FreeBSD's kstack size is only
2 pages by default, this blows the stack and causes a double fault.

To deal with this, we now create all our kthreads with 8 stack pages.
Also, we now run all timer callouts in the ndis swi thread (since
they would otherwise run in the clock ithread, whose stack is too
small). It happens that the alloca() in this case was occuring within
the interrupt handler, which was already running in the ndis swi
thread, but I want to deal with the callouts too just to be extra
safe.

NOTE: this will only work if you update vm_machdep.c with the change
I just committed. If you don't include this fix, setting the number
of stack pages with kthread_create() has essentially no effect.
2004-03-22 00:41:41 +00:00
wpaul
8feaa1f450 - Rewrite the timer and event API routines in subr_ndis.c so that they
are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just
  as it is in Windows. This reduces code duplication and more closely
  imitates the way things are done in Windows.

- Modify ndis_encode_parm() to deal with the case where we have
  a registry key expressed as a hex value ("0x1") which is being
  read via NdisReadConfiguration() as an int. Previously, we tried
  to decode things like "0x1" with strtol() using a base of 10, which
  would always yield 0. This is what was causing problems with the
  Intel 2200BG Centrino 802.11g driver: the .inf file that comes
  with it has a key called RadioEnable with a value of 0x1. We
  incorrectly decoded this value to '0' when it was queried, hence
  the driver thought we wanted the radio turned off.

- In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO,
  but NDIS_80211_AUTHMODE_SHARED may not be right in some cases,
  so for now always use NDIS_80211_AUTHMODE_OPEN.

NOTE: There is still one problem with the Intel 2200BG driver: it
happens that the kernel stack in Windows is larger than the kernel
stack in FreeBSD. The 2200BG driver sometimes eats up more than 2
pages of stack space, which can lead to a double fault panic.
For the moment, I got things to work by adding the following to
my kernel config file:

options         KSTACK_PAGES=8

I'm pretty sure 8 is too big; I just picked this value out of a hat
as a test, and it happened to work, so I left it. 4 pages might be
enough. Unfortunately, I don't think you can dynamically give a
thread a larger stack, so I'm not sure how to handle this short of
putting a note in the man page about it and dealing with the flood
of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
wpaul
5aa1390e61 Add vectors for _snprintf() and _vsnprintf() (redirected straight to
snprintf() and vsnprintf() in FreeBSD kernel land).

This is needed by the Intel Centrino 2200BG driver. Unfortunately, this
driver still doesn't work right with Project Evil even with this tweak,
but I'm unable to diagnose the problem since I don't have access to a
sample card.
2004-03-15 16:39:03 +00:00
wpaul
74a2897640 Fix mind-o: sanity check in ndis_disable_ndis() is not sane. 2004-03-11 09:50:00 +00:00
wpaul
f068497517 Fix the problem with the Cisco Aironet 340 PCMCIA card. Most newer drivers
for Windows are deserialized miniports. Such drivers maintain their own
queues and do their own locking. This particular driver is not deserialized
though, and we need special support to handle it correctly.

Typically, in the ndis_rxeof() handler, we pass all incoming packets
directly to (*ifp->if_input)(). This in turn may cause another thread
to run and preempt us, and the packet may actually be processed and
then released before we even exit the ndis_rxeof() routine. The
problem with this is that releasing a packet calls the ndis_return_packet()
function, which hands the packet and its buffers back to the driver.
Calling ndis_return_packet() before ndis_rxeof() returns will screw
up the driver's internal queues since, not being deserialized,
it does no locking.

To avoid this problem, if we detect a serialized driver (by checking
the attribute flags passed to NdisSetAttributesEx(), we use an alternate
ndis_rxeof() handler, ndis_rxeof_serial(), which puts the call to
(*ifp->if_input)() on the NDIS SWI work queue. This guarantees the
packet won't be processed until after ndis_rxeof_serial() returns.

Note that another approach is to always copy the packet data into
another mbuf and just let the driver retain ownership of the ndis_packet
structure (ndis_return_packet() never needs to be called in this
case). I'm not sure which method is faster.
2004-03-11 09:40:00 +00:00
wpaul
dab75fac6b Fix several issues related to the KeInitializeTimer() etc... API stuff
that I added recently:

- When a periodic timer fires, it's automatically re-armed. We must
  make sure to re-arm the timer _before_ invoking any caller-supplied
  defered procedure call: the DPC may choose to call KeCancelTimer(),
  and re-arming the timer after the DPC un-does the effect of the
  cancel.

- Fix similar issue with periodic timers in subr_ndis.c.

- When calling KeSetTimer() or KeSetTimerEx(), if the timer is
  already pending, untimeout() it first before timeout()ing
  it again.

- The old Atheros driver for the 5211 seems to use KeSetTimerEx()
  incorrectly, or at the very least in a very strange way that
  doesn't quite follow the Microsoft documentation. In one case,
  it calls KeSetTimerEx() with a duetime of 0 and a period of 5000.
  The Microsoft documentation says that negative duetime values
  are relative to the current time and positive values are absolute.
  But it doesn't say what's supposed to happen with positive values
  that less than the current time, i.e. absolute values that are
  in the past.

  Lacking any further information, I have decided that timers with
  positive duetimes that are in the past should fire right away (or
  in our case, after only 1 tick). This also takes care of the other
  strange usage in the Atheros driver, where the duetime is
  specified as 500000 and the period is 50. I think someone may
  have meant to use -500000 and misinterpreted the documentation.

- Also modified KeWaitForSingleObject() and KeWaitForMultipleObjects()
  to make the same duetime adjustment, since they have the same rules
  regarding timeout values.

- Cosmetic: change name of 'timeout' variable in KeWaitForSingleObject()
  and KeWaitForMultipleObjects() to 'duetime' to avoid senseless
  (though harmless) overlap with timeout() function name.

With these fixes, I can get the 5211 card to associate properly with
my adhoc net using driver AR5211.SYS version 2.4.1.6.
2004-03-10 07:43:11 +00:00
wpaul
7a42ffc382 Add preliminary support for PCMCIA devices in addition to PCI/cardbus.
if_ndis.c has been split into if_ndis_pci.c and if_ndis_pccard.c.
The ndiscvt(8) utility should be able to parse device info for PCMCIA
devices now. The ndis_alloc_amem() has moved from kern_ndis.c to
if_ndis_pccard.c so that kern_ndis.c no longer depends on pccard.

NOTE: this stuff is not guaranteed to work 100% correctly yet. So
far I have been able to load/init my PCMCIA Cisco Aironet 340 card,
but it crashes in the interrupt handler. The existing support for
PCI/cardbus devices should still work as before.
2004-03-07 02:49:06 +00:00
jhb
2642ed4029 kthread_exit() no longer requires Giant, so don't force callers to acquire
Giant just to call kthread_exit().

Requested by:	many
2004-03-05 22:42:17 +00:00
wpaul
f7976fadc0 - Some older Atheros drivers want KeInitializeTimer(), so implement it,
along with KeInitializeTimerEx(), KeSetTimer(), KeSetTimerEx(),
  KeCancelTimer(), KeReadStateTimer() and KeInitializeDpc(). I don't
  know for certain that these will make the Atheros driver happy since
  I don't have the card/driver combo needed to test it, but these are
  fairly independent so they shouldn't break anything else.

- Debugger() is present even in kernels without options DDB, so no
  conditional compilation is necessary (pointed out by bde).

- Remove the extra km_acquirecnt member that I added to struct kmutant
  and embed it within an unused portion of the structure instead, so that
  we don't make the structure larger than it's defined to be in Windows.
  I don't know what crack I was smoking when I decided it was ok to do
  this, but it's worn off now.
2004-03-04 23:04:02 +00:00
wpaul
3ca539236d Add sanity checks to the ndis_packet and ndis_buffer pool handling
routines to guard against problems caused by (possibly) buggy drivers.

The RealTek 8180 wireless driver calls NdisFreeBuffer() to release
some of its buffers _after_ it's already called NdisFreeBufferPool()
to destroy the pool to which the buffers belong. In our implementation,
this error causes NdisFreeBuffer() to touch stale heap memory.

If you are running a release kernel, and hence have INVARIANTS et al
turned off, it turns out nothing happens. But if you're using a
development kernel config with INVARIANTS on, the malloc()/free()
sanity checks will scribble over the pool memory with 0xdeadc0de
once it's released so that any attempts to touch it will cause a
trap, and indeed this is what happens. It happens that I run 5.2-RELEASE
on my laptop, so when I tested the rtl8180.sys driver, it worked fine
for me, but people trying to run it with development systems checked
out or cvsupped from -current would get a page fault on driver load.

I can't find any reason why the NDISulator would cause the RealTek
driver to do the NdisFreeBufferPool() prematurely, and the same driver
obviously works with Windows -- or at least, it doesn't cause a crash:
the Microsoft documentation for NdisFreeBufferPool() says that failing
to return all buffers to the pool before calling  NdisFreeBufferPool()
causes a memory leak.

I've written to my contacts at RealTek asking them to check if this
is indeed a bug in their driver. In the meantime, these new sanity checks
will catch this problem and issue a warning rather than causing a trap.
The trick is to keep a count of outstanding buffers for each buffer pool,
and if the driver tries to call NdisFreeBufferPool() while there are still
buffers outstanding, we mark the pool for deletion and then defer
destroying it until after the last buffer has been reclaimed.
2004-03-04 00:17:14 +00:00
wpaul
753cd4eacb Add proper support for DbgPrint(): only print messages if bootverbose
is set, since some drivers with debug info can be very chatty.

Also implement DbgBreakPoint(), which is the Windows equivalent of
Debugger(). Unfortunately, this forces subr_ntoskrnl.c to include
opt_ddb.h.
2004-03-03 17:57:05 +00:00
wpaul
427370d7d1 Add vector for memmove() (currently aliased to memcpy()) a implement
ExInterlockedAddLargeStatistic().
2004-02-17 21:50:39 +00:00
wpaul
1e2ef501f0 More cleanups/fixes for the AMD Am1771 driver:
- When adding new waiting threads to the waitlist for an object,
  use INSERT_LIST_TAIL() instead of INSERT_LIST_HEAD() so that new
  waiters go at the end of the list instead of the beginning. When we
  wake up a synchronization object, only the first waiter is awakened,
  and this needs to be the first thread that actually waited on the object.

- Correct missing semicolon in INSERT_LIST_TAIL() macro.

- Implement lookaside lists correctly. Note that the Am1771 driver
  uses lookaside lists to manage shared memory (i.e. DMAable) buffers
  by specifying its own alloc and free routines. The Microsoft documentation
  says you should avoid doing this, but apparently this did not deter
  the developers at AMD from doing it anyway.

With these changes (which are the result of two straight days of almost
non-stop debugging), I think I finally have the object/thread handling
semantics implemented correctly. The Am1771 driver no longer crashes
unexpectedly during association or bringing the interface up.
2004-02-16 02:50:03 +00:00
wpaul
a3ef672562 Fix a problem with the way we schedule work on the NDIS worker threads.
The Am1771 driver will sometimes do the following:

- Some thread-> NdisScheduleWorkItem(some work)
- Worker thread -> do some work, KeWaitForSingleObject(some event)
- Some other thread -> NdisScheduleWorkItem(some other work)

When the second call to NdisScheduleWorkItem() occurs, the NDIS worker
thread (in our case ndis taskqueue) is suspended in KeWaitForSingleObject()
and waiting for an event to be signaled. This is different from when
the worker thread is idle and waiting on NdisScheduleWorkItem() to
send it more jobs. However, the ndis_sched() function in kern_ndis.c
always calls kthread_resume() when queueing a new job. Normally this
would be ok, but here this causes KeWaitForSingleObject() to return
prematurely, which is not what we want.

To fix this, the NDIS threads created by kern_ndis.c maintain a state
variable to indicate whether they are running (scanning the job list
and executing jobs) or sleeping (blocked on kthread_suspend() in
ndis_runq()), and ndis_sched() will only call kthread_resume() if
the thread is in the sleeping state.

Note that we can't just check to see if the thread is on the run queue:
in both cases, the thread is sleeping, but it's sleeping for different
reasons.

This stops the Am1771 driver from emitting various "NDIS ERROR" messages
and fixes some cases where it crashes.
2004-02-14 20:57:32 +00:00
wpaul
d3ac9e6362 Correct instance of *timeout that should have been timeout.
Noticed by: mlaier
2004-02-11 23:11:12 +00:00
wpaul
04e0838d2b Add yet more bulletproofing. This is to guard against the case that
ndis_init_nic() works one during attach, but fails later. Many things
will blow up if ndis_init_nic() fails and we aren't careful.
2004-02-11 21:53:40 +00:00
wpaul
5280743f49 Add some bulletproofing: don't allow the ndis_get_info() or ndis_set_info()
routines to do anything except return error if the miniport adapter context
is not set (meaning we either having init'ed the driver yet, or the
initialization failed).

Also, be sure to NULL out the adapter context along with the
miniport characteristics pointers if calling the MiniportInitialize()
method fails.
2004-02-10 23:01:53 +00:00
wpaul
5e5b84d04c Add stub implementations of KfLowerIrql() and KfRaiseIrql() (both of
which are _fastcall).
2004-02-09 19:13:58 +00:00
wpaul
cef20b3561 Make NdisMMapIoSpace() guard against NULL/uninitialized resource pointers too. 2004-02-08 20:39:35 +00:00
wpaul
fc00d2a1cd Make NdisMMapIoSpace() handle the case where a device has both mem
and altmem ranges mapped.
2004-02-08 20:32:41 +00:00
wpaul
31e40b57eb Argh. kthread_suspend() when in P_KTHREAD context, tsleep() when not,
not the other way around.
2004-02-07 23:47:10 +00:00
wpaul
f4a52a522b Correct an intance of mtx_pool_lock() that should have been mtx_pool_unlock(). 2004-02-07 22:19:20 +00:00
wpaul
fe7c8eefc3 Add a whole bunch of new stuff to make the driver for the AMD Am1771/Am1772
802.11b chipset work. This chip is present on the SMC2602W version 3
NIC, which is what was used for testing. This driver creates kernel
threads (12 of them!) for various purposes, and required the following
routines:

PsCreateSystemThread()
PsTerminateSystemThread()
KeInitializeEvent()
KeSetEvent()
KeResetEvent()
KeInitializeMutex()
KeReleaseMutex()
KeWaitForSingleObject()
KeWaitForMultipleObjects()
IoGetDeviceProperty()

and several more. Also, this driver abuses the fact that NDIS events
and timers are actually Windows events and timers, and uses NDIS events
with KeWaitForSingleObject(). The NDIS event routines have been rewritten
to interface with the ntoskrnl module. Many routines with incorrect
prototypes have been cleaned up.

Also, this driver puts jobs on the NDIS taskqueue (via NdisScheduleWorkItem())
which block on events, and this interferes with the operation of
NdisMAllocateSharedMemoryAsync(), which was also being put on the
NDIS taskqueue. To avoid the deadlock, NdisMAllocateSharedMemoryAsync()
is now performed in the NDIS SWI thread instead.

There's still room for some cleanups here, and I really should implement
KeInitializeTimer() and friends.
2004-02-07 06:44:13 +00:00
wpaul
190b4ac58a Correct/improve the implementation of NdisMAllocateSharedMemoryAsync().
Since we have a worker thread now, we can actually do the allocation
asynchronously in that thread's context. Also, we need to return a
status value: if we're unable to queue up the async allocation, we
return NDIS_STATUS_FAILURE, otherwise we return NDIS_STATUS_PENDING
to indicate the allocation has been queued and will occur later.

This replaces the kludge where we just invoked the callback routine
right away in the current context.
2004-02-04 04:44:16 +00:00
wpaul
cad1573762 Implement support for single packet sends. The Intel Centrino driver
that Asus provides on its CDs has both a MiniportSend() routine
and a MiniportSendPackets() function. The Microsoft NDIS docs say
that if a driver has both, only the MiniportSendPackets() routine
will be used. Although I think I implemented the support correctly,
calling the MiniportSend() routine seems to result in no packets going
out on the air, even though no error status is returned. The
MiniportSendPackets() function does work though, so at least in
this case it doesn't matter.

In if_ndis.c:ndis_getstate_80211(), if ndis_get_assoc() returns
an error, don't bother trying to obtain any other state since the
calls may fail, or worse cause the underlying driver to crash.

(The above two changes make the Asus-supplied Centrino work.)

Also, when calling the OID_802_11_CONFIGURATION OID, remember
to initialize the structure lengths correctly.

In subr_ndis.c:ndis_open_file(), set the current working directory
to rootvnode if we're in a thread that doesn't have a current
working directory set.
2004-02-03 07:39:23 +00:00
wpaul
2d29cf4701 Implement NdisVirtualBufferAddress() and NdisVirtualBufferAddressSafe().
The RealTek 8180 driver seems to need this.
2004-01-27 08:10:34 +00:00
wpaul
3014162ffa Reorganize the timer code a little and implement NdisInitializeTimer()
and NdisCancelTimer(). NdisInitializeTimer() doesn't accept an NDIS
miniport context argument, so we have to derive it from the timer
function context (which is supposed to be the adapter private context).
NdisCancelTimer is now an alias for NdisMCancelTimer().

Also add stubs for NdisMRegisterDevice() and NdisMDeregisterDevice().
These are no-ops for now, but will likely get fleshed in once I start
working on the Am1771/Am1772 wireless driver.
2004-01-26 21:21:53 +00:00
wpaul
d44bf296d3 Avoid possible panic on shutdown: if there are still some devices
attached when shutting down, kill our kthreads, but don't destroy
the mutex pool and uma zone resources since the driver shutdown
routine may need them later.
2004-01-26 08:36:18 +00:00