assuming them to be inflight write buffers. This is not always the case.
bufdaemon might hold the buffer lock and give up writing the buffer due to it
having dependencies, the file system being suspended or the vnode lock being
held by another thread. When bufdaemon decides to write the buffer there is
still a window before bufobj_wref() has been called, allowing other threads to
believe that the vnode has no dirty buffers or inflight writes.
Try harder to flush first block of new subdirectory to get rid of MKDIR_BODY
dependency.
same time as it is changed back into a normal file. The locker would
get the shared "snaplk" lock which would no longer be the correct lock
for the vnode.
buffers to go on the buf daemon's DIRTYGIANT queue.
- Set BO_NEEDSGIANT on ffs's devvp since the ffs_copyonwrite handler
runs in the context of the buf daemon and may require Giant.
enables multilabel, or any option for that matter, most likely they have
a reason. This will allow users to see that mulilabel is enabled via an
issued "mount" command and remove an annoying warning - printed only when
a MAC kernel is not installed - on boot up.
Discussed with: green, brueffer, Samy Al Bahra.
Probably ran past: csjp (though I can't remember).
This does not do what I wanted as all dirty buffers must be flushed
by the call to ffs_sync and any remaining dependency work would mean
that this failed.
Pointed out by: tegge
This does not do what I wanted as all dirty buffers must be flushed
by the call to ffs_sync and any remaining dependency work would mean
that this failed.
Pointed out by: tegge
Fix detection of active unlinked files by checking VI_OWEINACT and
VI_DOINGINACT in addition to v_usecount.
Defer inactive handling for unlinked files if the file system is mostly
suspended (secondary writes being blocked).
Perform deferred inactive handling after the file system is resumed.
replacement for vn_write_suspend_wait() to better account for secondary write
processing.
Close race where secondary writes could be started after ffs_sync() returned
but before the file system was marked as suspended.
Detect if secondary writes or softdep processing occurred during vnode sync
loop in ffs_sync() and retry the loop if needed.
be called without any vnode locks held. Remove calls to vn_start_write() and
vn_finished_write() in vnode_pager_putpages() and add these calls before the
vnode lock is obtained to most of the callers that don't already have them.
has many positive effects including improved smp locking, reducing
interdependencies between mounts that can lead to deadlocks, etc.
- Add the softdep worklist and various counters to the ufsmnt structure.
- Add a mount pointer to the workitem and remove mount pointers from the
various structures derived from the workitem as they are now redundant.
- Remove the poor-man's semaphore protecting softdep_process_worklist and
softdep_flushworklist. Several threads may now process the list
simultaneously.
- Add softdep_waitidle() to block the thread until all pending
dependencies being operated on by other threads have been flushed.
- Use softdep_waitidle() in unmount and snapshots to block either
operation until the fs is stable.
- Remove softdep worklist processing from the syncer and move it into the
softdep_flush() thread. This thread processes all softdep mounts
once each second and when it is called via the new softdep_speedup()
when there is a resource shortage. This removes the softdep hook
from the kernel and various hacks in header files to support it.
Reviewed by/Discussed with: tegge, truckman, mckusick
Tested by: kris
that NetBSD implemented it independently of them (don't know which one
was actually first). This saves about 24k for those times you don't
need snapshot support (like when running off a ram disk, or in an
embedded environment where size matters).
for export structure and pass that to vfs_export().
Currently in userland mount(8), an export structure is unconditionally
passed in, only for UFS. This is an attempt to move that UFS-specific
behavior out of mount(8) and into the UFS filesystem code.
callpath via vfs_getopt(), and set the appropriate MNT_* flag:
-> acls, async, force, multilabel, noasync, noatime,
-> noclusterr, noclusterw, snapshot, update
- Allow errmsg as a valid mount option via vfs_getopt(),
so we can later add a hook to propagate mount errors back
to userspace via vfs_mount_error().
to (max block - 1) * bsize. For DEV_BSIZE, this doubles the limit from
0.5 TB to 1 TB. For the old 4.4 FFS case, decrease the limit from 0.5 TB
to 2 GB - 1. Older systems had a 32 bit off_t so they couldn't access the
larger files anyway.
Collaboration with: bde
updated by a process holding the snapshot lock. Another process updating a
different inode in the same inodeblock will do copy on write checks and lock in
the opposite direction.
The snapshot code force a copy on write of these blocks manually (cf. start of
expunge_ufs[12]) and these inode blocks are later put on snapblklist.
This partial fix is to 'drain' the relevant ffs_copyonwrite() operation after
installing new snapblklist. This is not a 100% solution since a failed block
allocation can cause implicit fsync() which might deadlock before the new
snapblklist has been installed.
file is flushed by a process not holding snaplk (e.g. bufdaemon). Another
process might hold snaplk and try to access the block due to ffs_copyonwrite
processing.
the cg map buffer being held when writing indirect blocks. The process ends up
in ffs_copyonwrite(), attempting to get snaplk while holding the cg map buffer
lock.
Another process might be in ffs_copyonwrite(), trying to allocate a new block
for a copy. It would hold snaplk while trying to get the cg map buffer lock.
Release the cg map buffer early and use the copy for most of the cgaccount
processing to avoid this deadlock.
skipping the call from ffs_snapremove() if the block number is zero.
Simplify snapshot locking in ffs_copyonwrite() and ffs_snapblkfree() by using
the same locking protocol for low block numbers as for larger block numbers.
This removes a lock leak that could happen if vn_lock() succeeded after
lockmgr() failed in ffs_snapblkfree().
Check if snapshot is gone before retrying a lock in ffs_copyonwrite().
reclamation. If the vnode previously was a fifo then v_op would point to
ffs_fifoops[12] instead of the expected ffs_vnodeops[12], causing a panic at
the end of ffsext_strategy.