most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
this is a low-functionality change that changes the kernel to access the main
thread of a process via the linked list of threads rather than
assuming that it is embedded in the process. It IS still embeded there
but remove all teh code that assumes that in preparation for the next commit
which will actually move it out.
Reviewed by: peter@freebsd.org, gallatin@cs.duke.edu, benno rice,
mutex releases to not require flags for the cases when preemption is
not allowed:
The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent
switching to a higher priority thread on mutex releease and swi schedule,
respectively when that switch is not safe. Now that the critical section
API maintains a per-thread nesting count, the kernel can easily check
whether or not it should switch without relying on flags from the
programmer. This fixes a few bugs in that all current callers of
swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from
fast interrupt handlers and the swi_sched of softclock needed this flag.
Note that to ensure that swi_sched()'s in clock and fast interrupt
handlers do not switch, these handlers have to be explicitly wrapped
in critical_enter/exit pairs. Presently, just wrapping the handlers is
sufficient, but in the future with the fully preemptive kernel, the
interrupt must be EOI'd before critical_exit() is called. (critical_exit()
can switch due to a deferred preemption in a fully preemptive kernel.)
I've tested the changes to the interrupt code on i386 and alpha. I have
not tested ia64, but the interrupt code is almost identical to the alpha
code, so I expect it will work fine. PowerPC and ARM do not yet have
interrupt code in the tree so they shouldn't be broken. Sparc64 is
broken, but that's been ok'd by jake and tmm who will be fixing the
interrupt code for sparc64 shortly.
Reviewed by: peter
Tested on: i386, alpha
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
In this case, C99's __func__ is properly defined as:
static const char __func__[] = "function-name";
and GCC 3.1 will not allow it to be used in bogus string concatenation.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
the process of exiting the kernel. The ast() function now loops as long
as the PS_ASTPENDING or PS_NEEDRESCHED flags are set. It returns with
preemption disabled so that any further AST's that arrive via an
interrupt will be delayed until the low-level MD code returns to user
mode.
- Use u_int's to store the tick counts for profiling purposes so that we
do not need sched_lock just to read p_sticks. This also closes a
problem where the call to addupc_task() could screw up the arithmetic
due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
clear_resched(), and resched_wanted() in favor of direct bit operations
on p_sflag.
- Fix up locking with sched_lock some. In addupc_intr(), use sched_lock
to ensure pr_addr and pr_ticks are updated atomically with setting
PS_OWEUPC. In ast() we clear pr_ticks atomically with clearing
PS_OWEUPC. We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.
Reviewed by: bde (mostly)
- move the sysctl code to kern_intr.c
- do not use INTRCNT_COUNT, but rather eintrcnt - intrcnt to determine
the length of the intrcnt array
- move the declarations of intrnames, eintrnames, intrcnt and eintrcnt
from machine-dependent include files to sys/interrupt.h
- remove the hw.nintr sysctl, it is not needed.
- fix various style bugs
Requested by: bde
Reviewed by: bde (some time ago)
sleep locks.
- Delay returning from ithread_remove_handler() until we are certain that
the interrupt handler being removed has in fact been removed from the
ithread.
- XXX: There is still a problem in that nothing protects the kernel from
adding a new handler while the ithread is running, though with our
current architectures this is not a problem.
Requested by: gibbs (2)
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
- Add a KASSERT() to ensure an ithread has a backing kernel thread when we
schedule it.
- Don't attempt to preemptively switch to an ithread if p_stat of curproc
is not SRUN.
update native priority, it is diffcult to get right and likely
to end up horribly wrong. Use an honestly wrong fixed value
that seems to work; PUSER for user threads, and the interrupt
priority for ithreads. Set it once when the process is created
and forget about it.
Suggested by: bde
Pointy hat: me
an interrupt thread while the interrupt thread is blocked on Giant waiting
to execute the interrupt handler being removed. The result was that the
intrhand structure would be free'd, and we would call 0xdeadc0de. The work
around is to check to see if the interrupt thread is idle when removing a
handler. If not, then we mark the interrupt handler as being dead using
the new IH_DEAD flag and don't remove it from the interrupt threads' list
of handlers. When the interrupt thread resumes, it will see a dead handler
while traversing the list of handlers and will remove the handler then.
work because opt_preemption.h wasn't #include'd. Instead, make use of the
do_switch parameter to ithread_schedule() and do the check in the alpha
interrupt code.
scheduling an interrupt thread to run when needed. This has the side
effect of enabling support for entropy gathering from interrupts on
all architectures.
- Change the software interrupt and x86 and alpha hardware interrupt code
to use ithread_schedule() for most of their processing when scheduling
an interrupt to run.
- Remove the pesky Warning message about interrupt threads having entropy
enabled. I'm not sure why I put that in there in the first place.
- Add more error checking for parameters and change some cases that
returned EINVAL to panic on failure instead via KASSERT().
- Instead of doing a documented evil hack of setting the P_NOLOAD flag
on every interrupt thread whose pri was SWI_CLOCK, set the flag
explicity for clk_ithd's proc during start_softintr().
- All processes go into the same array of queues, with different
scheduling classes using different portions of the array. This
allows user processes to have their priorities propogated up into
interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
32. We used to have 4 separate arrays of 32 queues each, so this
may not be optimal. The new run queue code was written with this
in mind; changing the number of run queues only requires changing
constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter. This
is intended to be used to create per-cpu run queues. Implement
wrappers for compatibility with the old interface which pass in
the global run queue structure.
- Group the priority level, user priority, native priority (before
propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
This was used to detect when a process' priority had lowered and
it should yield. We now effectively yield on every interrupt.
- Activate propogate_priority(). It should now have the desired
effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
idle loop. It interfered with propogate_priority() because
the idle process needed to do a non-blocking acquire of Giant
and then other processes would try to propogate their priority
onto it. The idle process should not do anything except idle.
vm_page_zero_idle() will return in the form of an idle priority
kernel thread which is woken up at apprioriate times by the vm
system.
- Update struct kinfo_proc to the new priority interface. Deliberately
change its size by adjusting the spare fields. It remained the same
size, but the layout has changed, so userland processes that use it
would parse the data incorrectly. The size constraint should really
be changed to an arbitrary version number. Also add a debug.sizeof
sysctl node for struct kinfo_proc.
- Add a set of MI helper functions for interrupt threads:
- ithread_create() creates a new interrupt thread
- ithread_destroy() destroys an interrupt thread
- ithread_add_handler() attaches a new handler to an interrupt thread
- ithread_remove_handler() detaches a handler from an interrupt thread
- Rename sinthand_add() and sched_swi() to swi_add() and swi_sched()
respectively so that they live in a consistent namespace.
- struct intrhand is no longer a public type. It would be private to
kern_intr.c but the current implementation of fast interrupts on the
alpha requires the type to be exported. However, all handlers should
be treated as void * cookies in the way that new-bus treats them. This
includes references to software interrupt handlers.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
spending, which was unused now that all software interrupts have
their own thread. Make the legacy schednetisr use an atomic op
for setting bits in the netisr mask.
Reviewed by: jhb
- Use the mutex in hardclock to ensure no races between it and
softclock.
- Make softclock be INTR_MPSAFE and provide a flag,
CALLOUT_MPSAFE, which specifies that a callout handler does not
need giant. There is still no way to set this flag when
regstering a callout.
Reviewed by: -smp@, jlemon
type of software interrupt. Roughly, what used to be a bit in spending
now maps to a swi thread. Each thread can have multiple handlers, just
like a hardware interrupt thread.
- Instead of using a bitmask of pending interrupts, we schedule the specific
software interrupt thread to run, so spending, NSWI, and the shandlers
array are no longer needed. We can now have an arbitrary number of
software interrupt threads. When you register a software interrupt
thread via sinthand_add(), you get back a struct intrhand that you pass
to sched_swi() when you wish to schedule your swi thread to run.
- Convert the name of 'struct intrec' to 'struct intrhand' as it is a bit
more intuitive. Also, prefix all the members of struct intrhand with
'ih_'.
- Make swi_net() a MI function since there is now no point in it being
MD.
Submitted by: cp
- Make softinterrupts (SWI's) almost completely MI, and divorce them
completely from the x86 hardware interrupt code.
- The ihandlers array is now gone. Instead, there is a MI shandlers array
that just contains SWI handlers.
- Most of the former machine/ipl.h files have moved to a new sys/ipl.h.
- Stub out all the spl*() functions on all architectures.
Submitted by: dfr