virtualization work done by Marko Zec (zec@).
This is the first in a series of commits over the course
of the next few weeks.
Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.
We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.
Obtained from: //depot/projects/vimage-commit2/...
Reviewed by: brooks, des, ed, mav, julian,
jamie, kris, rwatson, zec, ...
(various people I forgot, different versions)
md5 (with a bit of help)
Sponsored by: NLnet Foundation, The FreeBSD Foundation
X-MFC after: never
V_Commit_Message_Reviewed_By: more people than the patch
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
in older versions of FreeBSD. This option is pointless as it is needed in just
about every interesting usage of forward that I have ever seen. It doesn't make
the system any safer and just wastes huge amounts of develper time
when the system doesn't behave as expected when code is moved from
4.x to 6.x It doesn't make
the system any safer and just wastes huge amounts of develper time
when the system doesn't behave as expected when code is moved from
4.x to 6.x or 7.x
Reviewed by: glebius
MFC after: 1 week
filtering mechanisms to use the new rwlock(9) locking API:
- Drop the variables stored in the phil_head structure which were specific to
conditions and the home rolled read/write locking mechanism.
- Drop some includes which were used for condition variables
- Drop the inline functions, and convert them to macros. Also, move these
macros into pfil.h
- Move pfil list locking macros intp phil.h as well
- Rename ph_busy_count to ph_nhooks. This variable will represent the number
of IN/OUT hooks registered with the pfil head structure
- Define PFIL_HOOKED macro which evaluates to true if there are any
hooks to be ran by pfil_run_hooks
- In the IP/IP6 stacks, change the ph_busy_count comparison to use the new
PFIL_HOOKED macro.
- Drop optimization in pfil_run_hooks which checks to see if there are any
hooks to be ran, and returns if not. This check is already performed by the
IP stacks when they call:
if (!PFIL_HOOKED(ph))
goto skip_hooks;
- Drop in assertion which makes sure that the number of hooks never drops
below 0 for good measure. This in theory should never happen, and if it
does than there are problems somewhere
- Drop special logic around PFIL_WAITOK because rw_wlock(9) does not sleep
- Drop variables which support home rolled read/write locking mechanism from
the IPFW firewall chain structure.
- Swap out the read/write firewall chain lock internal to use the rwlock(9)
API instead of our home rolled version
- Convert the inlined functions to macros
Reviewed by: mlaier, andre, glebius
Thanks to: jhb for the new locking API
may have changed by m_pullup() during fastforward processing.
While this is a bug it is actually never triggered in real world
situations and it is not remotely exploitable.
Found by: Coverity Prevent(tm)
Coverity ID: CID780
Sponsored by: TCP/IP Optimization Fundraise 2005
include ip_options.h into all files making use of IP Options functions.
From ip_input.c rev 1.306:
ip_dooptions(struct mbuf *m, int pass)
save_rte(m, option, dst)
ip_srcroute(m0)
ip_stripoptions(m, mopt)
From ip_output.c rev 1.249:
ip_insertoptions(m, opt, phlen)
ip_optcopy(ip, jp)
ip_pcbopts(struct inpcb *inp, int optname, struct mbuf *m)
No functional changes in this commit.
Discussed with: rwatson
Sponsored by: TCP/IP Optimization Fundraise 2005
IFF_DRV_RUNNING, as well as the move from ifnet.if_flags to
ifnet.if_drv_flags. Device drivers are now responsible for
synchronizing access to these flags, as they are in if_drv_flags. This
helps prevent races between the network stack and device driver in
maintaining the interface flags field.
Many __FreeBSD__ and __FreeBSD_version checks maintained and continued;
some less so.
Reviewed by: pjd, bz
MFC after: 7 days
returns error. In this case mbuf has already been freed. [1]
- Remove redundant declaration.
PR: kern/78893 [1]
Submitted by: Liang Yi [1]
Reviewed by: sam
MFC after: 1 day
destined for a blackhole route.
This also means that blackhole routes do not need to be bound to lo(4)
or disc(4) interfaces for the net.inet.ip.fastforwarding=1 case.
Submitted by: james at towardex dot com
Sponsored by: eXtensible Open Router Project <URL:http://www.xorp.org/>
MFC after: 3 weeks
passing along socket information. This is required to work around a LOR with
the socket code which results in an easy reproducible hard lockup with
debug.mpsafenet=1. This commit does *not* fix the LOR, but enables us to do
so later. The missing piece is to turn the filter locking into a leaf lock
and will follow in a seperate (later) commit.
This will hopefully be MT5'ed in order to fix the problem for RELENG_5 in
forseeable future.
Suggested by: rwatson
A lot of work by: csjp (he'd be even more helpful w/o mentor-reviews ;)
Reviewed by: rwatson, csjp
Tested by: -pf, -ipfw, LINT, csjp and myself
MFC after: 3 days
LOR IDs: 14 - 17 (not fixed yet)
filters). After the ipfw to pfil move ip_input() expects M_FASTFWD_OURS
tagged packets to have ip_len and ip_off in host byte order instead of
network byte order.
PR: kern/71652
Submitted by: mlaier (patch)
compile option. All FreeBSD packet filters now use the PFIL_HOOKS API and
thus it becomes a standard part of the network stack.
If no hooks are connected the entire packet filter hooks section and related
activities are jumped over. This removes any performance impact if no hooks
are active.
Both OpenBSD and DragonFlyBSD have integrated PFIL_HOOKS permanently as well.
and preserves the ipfw ABI. The ipfw core packet inspection and filtering
functions have not been changed, only how ipfw is invoked is different.
However there are many changes how ipfw is and its add-on's are handled:
In general ipfw is now called through the PFIL_HOOKS and most associated
magic, that was in ip_input() or ip_output() previously, is now done in
ipfw_check_[in|out]() in the ipfw PFIL handler.
IPDIVERT is entirely handled within the ipfw PFIL handlers. A packet to
be diverted is checked if it is fragmented, if yes, ip_reass() gets in for
reassembly. If not, or all fragments arrived and the packet is complete,
divert_packet is called directly. For 'tee' no reassembly attempt is made
and a copy of the packet is sent to the divert socket unmodified. The
original packet continues its way through ip_input/output().
ipfw 'forward' is done via m_tag's. The ipfw PFIL handlers tag the packet
with the new destination sockaddr_in. A check if the new destination is a
local IP address is made and the m_flags are set appropriately. ip_input()
and ip_output() have some more work to do here. For ip_input() the m_flags
are checked and a packet for us is directly sent to the 'ours' section for
further processing. Destination changes on the input path are only tagged
and the 'srcrt' flag to ip_forward() is set to disable destination checks
and ICMP replies at this stage. The tag is going to be handled on output.
ip_output() again checks for m_flags and the 'ours' tag. If found, the
packet will be dropped back to the IP netisr where it is going to be picked
up by ip_input() again and the directly sent to the 'ours' section. When
only the destination changes, the route's 'dst' is overwritten with the
new destination from the forward m_tag. Then it jumps back at the route
lookup again and skips the firewall check because it has been marked with
M_SKIP_FIREWALL. ipfw 'forward' has to be compiled into the kernel with
'option IPFIREWALL_FORWARD' to enable it.
DUMMYNET is entirely handled within the ipfw PFIL handlers. A packet for
a dummynet pipe or queue is directly sent to dummynet_io(). Dummynet will
then inject it back into ip_input/ip_output() after it has served its time.
Dummynet packets are tagged and will continue from the next rule when they
hit the ipfw PFIL handlers again after re-injection.
BRIDGING and IPFW_ETHER are not changed yet and use ipfw_chk() directly as
they did before. Later this will be changed to dedicated ETHER PFIL_HOOKS.
More detailed changes to the code:
conf/files
Add netinet/ip_fw_pfil.c.
conf/options
Add IPFIREWALL_FORWARD option.
modules/ipfw/Makefile
Add ip_fw_pfil.c.
net/bridge.c
Disable PFIL_HOOKS if ipfw for bridging is active. Bridging ipfw
is still directly invoked to handle layer2 headers and packets would
get a double ipfw when run through PFIL_HOOKS as well.
netinet/ip_divert.c
Removed divert_clone() function. It is no longer used.
netinet/ip_dummynet.[ch]
Neither the route 'ro' nor the destination 'dst' need to be stored
while in dummynet transit. Structure members and associated macros
are removed.
netinet/ip_fastfwd.c
Removed all direct ipfw handling code and replace it with the new
'ipfw forward' handling code.
netinet/ip_fw.h
Removed 'ro' and 'dst' from struct ip_fw_args.
netinet/ip_fw2.c
(Re)moved some global variables and the module handling.
netinet/ip_fw_pfil.c
New file containing the ipfw PFIL handlers and module initialization.
netinet/ip_input.c
Removed all direct ipfw handling code and replace it with the new
'ipfw forward' handling code. ip_forward() does not longer require
the 'next_hop' struct sockaddr_in argument. Disable early checks
if 'srcrt' is set.
netinet/ip_output.c
Removed all direct ipfw handling code and replace it with the new
'ipfw forward' handling code.
netinet/ip_var.h
Add ip_reass() as general function. (Used from ipfw PFIL handlers
for IPDIVERT.)
netinet/raw_ip.c
Directly check if ipfw and dummynet control pointers are active.
netinet/tcp_input.c
Rework the 'ipfw forward' to local code to work with the new way of
forward tags.
netinet/tcp_sack.c
Remove include 'opt_ipfw.h' which is not needed here.
sys/mbuf.h
Remove m_claim_next() macro which was exclusively for ipfw 'forward'
and is no longer needed.
Approved by: re (scottl)
of IP options.
net.inet.ip.process_options=0 Ignore IP options and pass packets unmodified.
net.inet.ip.process_options=1 Process all IP options (default).
net.inet.ip.process_options=2 Reject all packets with IP options with ICMP
filter prohibited message.
This sysctl affects packets destined for the local host as well as those
only transiting through the host (routing).
IP options do not have any legitimate purpose anymore and are only used
to circumvent firewalls or to exploit certain behaviours or bugs in TCP/IP
stacks.
Reviewed by: sam (mentor)
o New function ip_findroute() to reduce code duplication for the
route lookup cases. (luigi)
o Store ip_len in host byte order on the stack instead of using
it via indirection from the mbuf. This allows to defer the host
byte conversion to a later point and makes a quicker fallback to
normal ip_input() processing. (luigi)
o Check if route is dampned with RTF_REJECT flag and drop packet
already here when ARP is unable to resolve destination address.
An ICMP unreachable is sent to inform the sender.
o Check if interface output queue is full and drop packet already
here. No ICMP notification is sent because signalling source quench
is depreciated.
o Check if media_state is down (used for ethernet type interfaces)
and drop the packet already here. An ICMP unreachable is sent to
inform the sender.
o Do not account sent packets to the interface address counters. They
are only for packets with that 'ia' as source address.
o Update and clarify some comments.
Submitted by: luigi (most of it)
them mostly with packet tags (one case is handled by using an mbuf flag
since the linkage between "caller" and "callee" is direct and there's no
need to incur the overhead of a packet tag).
This is (mostly) work from: sam
Silence from: -arch
Approved by: bms(mentor), sam, rwatson
accordingly. The define is left intact for ABI compatibility
with userland.
This is a pre-step for the introduction of tcp_hostcache. The
network stack remains fully useable with this change.
Reviewed by: sam (mentor), bms
Reviewed by: -net, -current, core@kame.net (IPv6 parts)
Approved by: re (scottl)
and remove two unneccessary variable initializations.
Make the introduction comment more clear with regard which parts of
the packet are touched.
Requested by: luigi
Short description of ip_fastforward:
o adds full direct process-to-completion IPv4 forwarding code
o handles ip fragmentation incl. hw support (ip_flow did not)
o sends icmp needfrag to source if DF is set (ip_flow did not)
o supports ipfw and ipfilter (ip_flow did not)
o supports divert, ipfw fwd and ipfilter nat (ip_flow did not)
o returns anything it can't handle back to normal ip_input
Enable with sysctl -w net.inet.ip.fastforwarding=1
Reviewed by: sam (mentor)