with AMPDU aggregate delimiters.
If there's an OFDM restart during an aggregate, the hardware ACKs
the previous frame, but communicates the RXed frame to the hardware
as having had CRC delimiter error + OFDM_RESTART phy error.
The frame however didn't have a CRC error and since the hardware ACKed
the aggregate to the sender, it thinks the frame was received.
Since I have no idea how often this occurs in the real world, add a
debug statement so trigger whenever this occurs. I'd appreciate an
email if someone finds this particular situation is triggered.
The Linux ath9k btcoex code is based off of this code.
Note this doesn't actually implement functional btcoex; there's some
driver glue and a whole lot of verification that is required.
On the other hand, I do have the AR9285+BT and AR9287+BT NICs which
this code supports..
Obtained from: Qualcomm Atheros, Linux ath9k
and the CRC error bits set. The radar payload is correct.
When this happens, the stack doesn't see them PHY error frames and
isn't interpreted as a PHY error. So, no radar detection and no radiotap
PHY error handling.
Now, this may introduce some weird issues if the MAC sends up some other
combination of CRC error + PHY error frames; this commit would break that
and mark them as PHY errors instead of CRC errors.
I may tinker with this a little more to pass radar/early radar/spectral
frames up as PHY errors if the CRC bit is set, to restore the previous
behaviour (where if CRC is set on a PHY error frame, it's marked as a CRC
error rather than PHY error.)
Tested on: AR5416, over the air, to a USRP N200 which is generating a
large number of a variety of radar pulses.
TODO: Test on AR9130, AR9160, AR9280 (and maybe radar pulses on
2GHz on AR9285/AR9287.)
PR: kern/169362
* Add an OS_A_REG_WRITE() routine - analog writes require a 100usec delay
on AR9280 and later, so create a method to do it.
* Use it for the AR9287 analog writes.
* Re-indent and style(9) the code.
This just requires a little HAL change (add a new config parameter) and
some glue in if_ath_pci.c, however I'm leaving this up for someone else
to do.
Obtained from: Qualcomm Atheros
These aren't strictly needed at the moment as we're not doing APSM
and forcing the NIC in and out of network sleep. But, they don't hurt.
Tested:
* AR9280 (mini-PCIe)
Obtained from: Qualcomm Atheros, Linux ath9k
* Now that ah_configPCIE is called for both power on and suspend/resume,
make sure the right bit(s) are cleared and set when suspending and
resuming. Specifically:
+ force disable/enable the PCIe PHY upon suspend/resume;
+ reprogram the PCIe WAR register when resuming and upon power-on.
* Add a recipe which powers down any PCIe PHY hardware inside the AR5416
(which is the PCI variant) to save on power. I have (currently) no way
to test exactly how much power is saved, if any.
Tested on:
* AR5416 cardbus - although unfortunately pccard/cbb/cardbus currently
detaches the NIC upon suspend, I don't think it's a proper test case.
* AR5418 PCIe attached to expresscard - since we're not doing PCIe APSM,
it's also not likely a full/good test case.
In both instances I went through a handful of suspend/resume cycles and
ensured that the STA vap reassociated correctly.
TODO:
* Setup a laptop to simply sit in a suspend/resume loop, making sure that
the NIC always correctly comes back;
* Start doing suspend/resume tests with actual traffic going on in the
background, as I bet this process is all quite racy at the present;
* Test adhoc/hostap mode, just to be completely sure it's working correctly;
* See if I can jury rig an external power source to an AR5416 to test out
whether ah_disablePCIE() works.
Obtained from: Qualcomm Atheros
* Add some other WAR bits (very usefully described too) in preparation for
porting over some suspend/resume fixes from ath9k/Atheros.
Obtained from: Qualcomm Atheros
not to disable the PCIe PHY in prepration for reset.
Extend the enablepci method to have a "poweroff" flag, which if equal
to true means the hardware is about to go to sleep.
* Flesh out the pcie disable method for 11n chips, as they were defaulting
to the AR5212 (empty) PCIe disable method.
* Add accessor macros for the HAL PCIe enable/disable calls.
* Call disable on ath_suspend()
* Call enable on ath_resume()
NOTE:
* This has nothing to do with the NIC sleep/run state - the NIC still
will stay in network-run state rather than supporting network-sleep
state. This is preparation work for supporting correct suspend/resume
WARs for the 11n PCIe NICs.
TODO:
* It may be feasible at this point to keep the chip powered down during
initial probe/attach and only power it up upon the first configure/reset
pass. This however would require correct (for values of "correct")
tracking of the NIC power configuration state from the driver and that
just isn't attempted at the moment.
Tested:
* AR9280 on my Lenovo T60, but with no suspend/resume pass (yet).
in the HAL. That's very memory hungry (32k just for channel statistics)
which would be better served by keeping a summary in the ANI state.
Or, later, keep a survey history in net80211.
So:
* Migrate the ah_chansurvey array to be a single entry, for the current
channel.
* Change the ioctl interface and ANI code to just reference that.
* Clear the ah_chansurvey array during channel reset, both in the AR5212
and AR5416 reset path.
* Always call ar5416GetListenTime()
* Modify ar5416GetListenTime() to:
+ don't update the ANI state if there isn't any ANI state;
+ don't update the channel survey state if there's no active
channel - just to be paranoid
+ copy the channel survey results into the current sample slot
based on the current channel; then increment the sample counter
and sample history counter.
* Modify ar5416GetMIBCyclesPct() to simply return a HAL_SURVEY_SAMPLE,
rather than a set of percentages. The ANI code wasn't using the
percentages anyway.
TODO:
* Create a new function which fetches the survey results periodically
* .. then modify the ANI code to use the pre-fetched values rather than
fetching them again
* Roll the 11n ext busy function from ar5416_misc.c to update all the
counters, then do the result calculation
* .. then, modify the MIB counter routine to correctly fetch a snapshot -
freeze the counters, fetch the values, then reset the counters.
The reference driver has a 3ms delay for the AR9130 but I'm not as yet
sure why. From what I can gather, it's likely waiting for some FIFO
flush to occur.
At some point in the future it may be worthwhile adding a WMAC
FIFO flush here, but that'd require some side-call through to the SoC
DDR flush routines.
Obtained from: Atheros
which will be needed for AR7010 and AR9287 USB access.
The names differ slightly from Linux and Atheros, for the sake of
consistency.
A lot more work is required in order to convert the 11n HAL support to
fully support USB.
at least until I can root cause what's going on.
The only platform I've seen this on is the AR9220 when attached to
the AR71xx CPUs. I get immediate PCIe bus errors and all subsequent
accesses cause further MIPS bus exceptions. I don't have any other
big-endian platforms to test this on.
If I get a chance (or two), I'll try to whack this on a bus analyser
and see exactly what happens.
I'd rather leave this on, especially for slower, embedded platforms.
But the #ifdef hell is something I'm trying to avoid.
Linux ath9k doesn't have this issue as it doesn't try queuing multi-
descriptor frames to the hardware.
Before, I was only setting the first and last descriptor in the final
frame correctly - and that was done by accident. The first descriptor in
the last sub-frame was being correctly updated by ath_tx_setds_11n();
the last descriptor in the last sub-frame was being correctly updated
by ath_buf_set_rate(). But both of those are "incorrect".
The correct behaviour is:
* AR_IsAggr is set for all descriptors for all subframes in an aggregate.
* AR_MoreAggr is set for all descriptors for all non-final sub-frames
in an aggregate.
Ie, all descriptors in the last sub-frame of an aggregate must have this
field set to 0.
I still need to do a couple of extra passes to ensure the pad delimiter
field is being correctly handled in all descriptors in the last sub-frame.
by capabilities.
Add an ar5416SetCapability() function, which contains logic to override
the chainmask and update the relevant stream.
This is designed to be called after the attach function, which presets
the TX/RX chainmask and stream.
TODO: check the chainmask against the hardware chainmask so non-existing
chains aren't enabled.
* Override the TX/RX stream count if the EEPROM reports a single RX or
TX stream, rather than assuming the device will always be a 2x2 strea
device.
* For AR9280 devices, don't hard-code 2x2 stream. Instead, allow the
ar5416FillCapabilityInfo() routine to correctly determine things.
The latter should be done for all 11n chips now that
ar5416FillCapabilityInfo() will set the TX/RX stream count based on the
active TX/RX chainmask in the EEPROM.
Thanks to Maciej Milewski for donating some AR9281 NICs to me for
testing.
* For legacy NICs, the combined RSSI should be used.
For earlier AR5416 NICs, use control chain 0 RSSI rather than combined
RSSI.
For AR5416 > version 2.1, use the combined RSSI again.
* Add in a missing AR5212 HAL method (get11nextbusy) which may be called
by radar code.
This serves no functional change for what's currently in FreeBSD.
to being more generic.
Other embedded SoCs also throw the configuration/PCI register
info into flash.
For now I'm just hard-coding the AR9280 option (for on-board AR9220's on
AP94 and commercial designs (eg D-Link DIR-825.))
TODO:
* Figure out how to support it for all 11n SoC NICs by doing it in
ar5416InitState();
* Don't hard-code the EEPROM size - add another field which is set
by the relevant chip initialisation code.
* 'owl_eep_start_loc' may need to be overridden in some cases to 0x0.
I need to do some further digging.
where they've disabled all the wireless devices/framework.
This is just a build workaround. If you're actively using wireless,
you must still define AH_SUPPORT_AR5416 as I'm not sure what else
will break!
The real solution is to make the module build depend if AH_SUPPORT_AR5416
is defined, as well as make the 11n code in if_ath_tx.c and if_ath_tx_ht.c
completely optional (maybe depend upon ATH_SUPPORT_11N.)