Commit Graph

7 Commits

Author SHA1 Message Date
peter
e47f330f64 Provide a tag so that miibus consumers can depend on the module,
regardless of whether it is in a seperate .ko or the kernel (or in a .ko
bundled with several other things in one file for packaging).
2000-04-29 13:38:26 +00:00
mdodd
87e31f4b90 Remove the 'ivars' arguement to device_add_child() and
device_add_child_ordered().  'ivars' may now be set using the
device_set_ivars() function.

This makes it easier for us to change how arbitrary data structures are
associated with a device_t.  Eventually we won't be modifying device_t
to add additional pointers for ivars, softc data etc.

Despite my best efforts I've probably forgotten something so let me know
if this breaks anything.  I've been running with this change for months
and its been quite involved actually isolating all the changes from
the rest of the local changes in my tree.

Reviewed by:	peter, dfr
1999-12-03 08:41:24 +00:00
peter
cca6f75f15 $Id$ -> $FreeBSD$ 1999-09-05 15:21:05 +00:00
wpaul
c880bbe674 The ASIC on the 3c905C appears to be manufactured by Broadcom (previous
ones were made by Lucent). The Broadcom chip also appears to use an
internal PHY made by Broadcom which uses the Broadcom OUI. This is different
from previous ASICs which always returned 0 in the PHY ID registers.
To account for this, I added the necessary ID values for the Broadcom
PHY so that it can be detected and attached using the 3Com PHY driver
instead of defaulting to the generic one.
1999-08-29 15:42:04 +00:00
peter
3b842d34e8 $Id$ -> $FreeBSD$ 1999-08-28 01:08:13 +00:00
wpaul
770a5a6eae Handle buses with multiple PHYs correctly. 1999-08-26 05:30:33 +00:00
wpaul
cdea47dc6e This commit adds support for the NetBSD MII abstraction layer and
MII-compliant PHY drivers. Many 10/100 ethernet NICs available today
either use an MII transceiver or have built-in transceivers that can
be programmed using an MII interface. It makes sense then to separate
this support out into common code instead of duplicating it in all
of the NIC drivers. The mii code also handles all of the media
detection, selection and reporting via the ifmedia interface.

This is basically the same code from NetBSD's /sys/dev/mii, except
it's been adapted to FreeBSD's bus architecture. The advantage to this
is that it automatically allows everything to be turned into a
loadable module. There are some common functions for use in drivers
once an miibus has been attached (mii_mediachg(), mii_pollstat(),
mii_tick()) as well as individual PHY drivers. There is also a
generic driver for all PHYs that aren't handled by a specific driver.
It's possible to do this because all 10/100 PHYs implement the same
general register set in addition to their vendor-specific register
sets, so for the most part you can use one driver for pretty much
any PHY. There are a couple of oddball exceptions though, hence
the need to have specific drivers.

There are two layers: the generic "miibus" layer and the PHY driver
layer. The drivers are child devices of "miibus" and the "miibus" is
a child of a given NIC driver. The "miibus" code and the PHY drivers
can actually be compiled and kldoaded as completely separate modules
or compiled together into one module. For the moment I'm using the
latter approach since the code is relatively small.

Currently there are only three PHY drivers here: the generic driver,
the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding
others later as I convert various NIC drivers to use this code.

I realize that I'm cvs adding this stuff instead of importing it
onto a separate vendor branch, but in my opinion the import approach
doesn't really offer any significant advantage: I'm going to be
maintaining this stuff and writing my own PHY drivers one way or
the other.
1999-08-21 17:40:53 +00:00