sc_rixmap is an inverse map
NB: could eliminate the check for an invalid rate by filling in 0 for
invalid entries but the rate control modules use it to identify
bogus rates so leave it for now
previously always pointing to the default vnet context, to a
dynamically changing thread-local one. The currvnet context
should be set on entry to networking code via CURVNET_SET() macros,
and reverted to previous state via CURVNET_RESTORE(). Recursions
on curvnet are permitted, though strongly discuouraged.
This change should have no functional impact on nooptions VIMAGE
kernel builds, where CURVNET_* macros expand to whitespace.
The curthread->td_vnet (aka curvnet) variable's purpose is to be an
indicator of the vnet context in which the current network-related
operation takes place, in case we cannot deduce the current vnet
context from any other source, such as by looking at mbuf's
m->m_pkthdr.rcvif->if_vnet, sockets's so->so_vnet etc. Moreover, so
far curvnet has turned out to be an invaluable consistency checking
aid: it helps to catch cases when sockets, ifnets or any other
vnet-aware structures may have leaked from one vnet to another.
The exact placement of the CURVNET_SET() / CURVNET_RESTORE() macros
was a result of an empirical iterative process, whith an aim to
reduce recursions on CURVNET_SET() to a minimum, while still reducing
the scope of CURVNET_SET() to networking only operations - the
alternative would be calling CURVNET_SET() on each system call entry.
In general, curvnet has to be set in three typicall cases: when
processing socket-related requests from userspace or from within the
kernel; when processing inbound traffic flowing from device drivers
to upper layers of the networking stack, and when executing
timer-driven networking functions.
This change also introduces a DDB subcommand to show the list of all
vnet instances.
Approved by: julian (mentor)
Broadcom BCM43xx chipsets. This driver uses the v3 firmware that
needs to be fetched separately. A port will be committed to create
the bwi firmware module.
The driver matches the following chips: Broadcom BCM4301, BCM4307,
BCM4306, BCM4309, BCM4311, BCM4312, BCM4318, BCM4319
The driver works for 802.11b and 802.11g.
Limitations:
This doesn't support the 802.11a or 802.11n portion of radios.
Some BCM4306 and BCM4309 cards don't work with Channel 1, 2 or 3.
Documenation for this firmware is reverse engineered from
http://bcm.sipsolutions.net/
V4 of the firmware is needed for 11a or 11n support
http://bcm-v4.sipsolutions.net/
Firmware needs to be fetched from a third party, port to be committed
# I've tested this with a BCM4319 mini-pci and a BCM4318 CardBus card, and
# not connected it to the build until the firmware port is committed.
Obtained from: DragonFlyBSD, //depot/projects/vap
Reviewed by: sam@, thompsa@
leading to a bug, when C-state does not decrease on sleep shorter then
declared transition latency. Fixing this deprecates workaround for broken
C-states on some hardware.
By the way, change state selecting logic a bit. Instead of last sleep
time use short-time average of it. Global interrupts rate in system is a
quite random value, to corellate subsequent sleeps so directly.
sleepable context for net80211 driver callbacks. This removes the need for USB
and firmware based drivers to roll their own code to defer the chip programming
for state changes, scan requests, channel changes and mcast/promisc updates.
When a driver callback completes the hardware state is now guaranteed to have
been updated and is in sync with net80211 layer.
This nukes around 1300 lines of code from the wireless device drivers making
them more readable and less race prone.
The net80211 layer has been updated as follows
- all state/channel changes are serialised on the taskqueue.
- ieee80211_new_state() always queues and can now be called from any context
- scanning runs from a single taskq function and executes to completion. driver
callbacks are synchronous so the channel, phy mode and rx filters are
guaranteed to be set in hardware before probe request frames are
transmitted.
Help and contributions from Sam Leffler.
Reviewed by: sam
- Generate fake channel interrupts even if channel busy with previous
request to let it finish. Without this, dumping requests were just queued
and never processed.
- Drop pre-dump requests queue on dumping. ATA code, working in dumping
(interruptless) mode, unable to handle long request queue. Actually, to get
coherent dump we anyway should do as few unrelated actions as possible.
Yukon from common multicast handling code. Yukon uses hash-based
multicast filtering(big endian form) but GENESIS uses perfect
multicast filtering as well as hash-based one(little endian form).
Due to the differences of multicast filtering there is no much
sense to have a common code.
o Remove sk_setmulti() and introduce sk_rxfilter_yukon(),
sk_rxfilter_yukon() that handles multicast filtering setup.
o Have sk_rxfilter_{yukon, genesis} handle promiscuous mode and
nuke sk_setpromisc(). This simplifies ioctl handler as well as
giving a chance to check validity of Rx control register of
Yukon.
o Don't reinitialize controller when IFF_ALLMULTI flags is changed.
o Nuke sk_gmchash(), it's not needed anymore.
o Always reconfigure Rx control register whenever a new multicast
filtering condition is changed. This fixes multicast filtering
setup on Yukon.
PR: kern/134051
- Probe supported sleep states from acpi_attach() just once and do not
call AcpiGetSleepTypeData() again. It is redundant because
AcpiEnterSleepStatePrep() does it any way.
- Treat UNKNOWN sleep state as NONE, i.e., "do nothing", and remove obscure
NONE state (ACPI_S_STATES_MAX + 1) to avoid confusions.
- Do not set unsupported sleep states as default button/switch events.
If the default sleep state is not supported, just set it as UNKNOWN/NONE.
- Do not allow sleep state change if the system is not fully up and running.
This should prevent entering S5 state multiple times, which causes strange
behaviours later.
- Make sleep states case-insensitive when they are used with sysctl(8).
For example,
sysctl hw.acpi.lid_switch_state=s1
sysctl hw.acpi.sleep_button_state=none
are now legal and equivalent to the uppercase ones.
Feature is controlled by hint.ata.X.pm_level tunable:
0 - PM disabled, old behaviour, default.
1 - device is allowed to initiate PM state change, host is passive.
2 - host initiates PARTIAL state transition every time port is idle.
3 - host initiates SLUMBER state transition every time port is idle.
PARTIAL state has up to 100us (50us for me) wakeup latency, but for my
ICH8M saves 0.5W of power per drive. SLUMBER state has up to 10ms (3.5ms
for me) wakeup latency, but saves 0.8W of power.
Modes 2 and 3 are implemented only for AHCI driver now.
Interface power management is incompatible with device presence detection
(host receives no signal from drive, so unable to monitor it), so later is
disabled when PM is used.
- Add some missing const.
- Move the size of the window spun by the registers to the softc
as neither using va_mem_size for this nor va_mem_base for the
start of the bus addresses is appropriate.
MFC after: 1 week
This change adds (possibly redundant) early check for invalid
state input parameter (including S0). Handling of S5 request
is reduced to simply calling shutdown_nice(). As a result
control flow of acpi_EnterSleepState is somewhat simplified
and resume/backout half of the function is not executed
for S5 (soft poweroff) request and invalid state requests.
Note: it seems that shutdown_nice may act as nop when initproc
is already initialized (to grab pid of 1), but init process is in
"pre-natal" state.
Tested by: Fabian Keil <fk@fabiankeil.de>
Reviewed by: njl, jkim
Approved by: rpaulo
controllers may be configured as legacy IDE mode by modifying subclass and
progif without actually changing PCI device IDs. Instead of complicating
code, we always force AHCI mode while probing. Also we restore AHCI mode
while resuming per ATI/AMD register programming/requirement guides.
- Fix SB700/800 "combined" mode. Unlike SB600, this PATA controller can
combine two SATA ports and emulate one PATA channel as primary or secondary
depending on BIOS configuration. When the combined mode is disabled, this
channel disappears and it works just like SB600 PATA controller, however.
- Add more PCI device IDs for SB700/800 and adjust device descriptions.
SB800 shares the same PCI device IDs and added two more SATA IDs.