- Call eisa_registerdev as soon as we have a device match. This allows the
"eisa_add_*" routines to tweak kdc_datalen as the kdc grows and shrinks.
eisaconf.c
- externalize the linked lists that hold our ioaddrs and maddrs.
caused by a different reason):
. #ifndef __FreeBSD__ around check for negative size, FreeBSD size_t is
unsigned
. Disable mirror/parity if interleave size is 0 (i.e., serial concatenation).
(1) The reads are always done from the first n/2 disks.
(2) Each write is done twice, to the "data" disk (in the first half) and
the "mirror" disk (in the second half).
ccdbuffer() now takes an extra argument (struct ccdbuf **) and stores
the pointer to ccdbuf in there. In case of a mirrored write, it
allocates and stores two pointers. The "residual" is also doubled
for mirrored writes so that ccdiodone() can correctly tell when all
the writes are done.
feature in the header type register, though it is required by the PCI spec.
This should correctly probe both functions of the Intel 82371FB chip,
without the need for a special case based on the device ID.
since setting up the DMA is too costly. Restructure for efficiency.
Pause the sequencer when a parity error occurs so that the kernel driver
knows during which phase the error was encountered.
includes a hack in the probe code: the 82371FB is a multifuction
device, but doesn't properly set the configuration bit which
indicates this. So, we just hard-wire all 82371FBs as multifunction
devices.
This does not actually make the bus-master IDE stuff work, although
if anyone wants to work on that, I have the databooks that tell
how to use it.
quite work yet, so the heart of it is disabled.
Added bdev and cdev args to dsopen().
drivers:
Fixed device names, links, minor numbers and modes.
wd.c:
Started actually supporting devfs.
diskslice.h:
Added devfs tokens to structs (currently 576 of them per disk! :-().
subr_diskslice.c:
Create devfs entries in dsopen() and (unsuccessfully) attempt to make
them go away at the right times. DEVFS is #undefed at the start so
that this shouldn't cause problems.
fd and wt drivers need bounce buffers, so this normally saves 32K-1K
of kernel memory.
Keep track of which DMA channels are busy. isa_dmadone() must now be
called when DMA has finished or been aborted.
Panic for unallocated and too-small (required) bounce buffers.
fd.c:
There will be new warnings about isa_dmadone() not being called after
DMA has been aborted.
sound/dmabuf.c:
isa_dmadone() needs more parameters than are available, so temporarily
use a new interface isa_dmadone_nobounce() to avoid having to worry
about panics for fake parameters. Untested.
the standard macro dbtob(). The non-B_PAGING case now works well enough
to run newfs on a 32GB virtual drive.
Fixed numerous bogus variable types and one overflowing multiplication
in the B_PAGING case of vnstrategy(). Swapping to virtual drives larger
than 2GB might work now.
SPIORDY just before we ack on the bus so that there is no chance to
see SPIORDY for the same byte twice.
Make some small modifications so that the Linux aic7xxx driver can use
our sequencer and register definition files verbatum.
Add the same type of safeguards we use in the mesg_in phase to the mesg_out
phase.
aic7xxx_reg.h:
Add definitions for the DSCommand register for PCI adapters.
aic7770.c:
Simplify the initialization of adapters by pulling all card specific
initialization to the card specific modules.
eisaconf.c:
outb 0x80 instead of 0xc80. The top byte is truncated anyway, and 0x80
was what was intended.
1) Use cpp to preprocess the sequencer code.
2) Convert all "magic numbers" to #defines shared by the sequencer and
kernel driver via the aic7xxx_reg.h file. (The assembler still needs
to be re-written in lex/yacc to allow ~|& type constructions).
3) Raise ATN on parity errors for "in" phases and send an initiator detected
error or message-in parity error message as appropriate.
4) Turn off the reselection hardware from the time or a (re)connection to
busfree. It seems that some fast targets were able to reconnect before
the sequencer was able to see busfree.
5) The message buffer is considered "in-use" when there is a positive length
count. The ACTIVE_MSG flag was unnecesary.
6) Properly set SCB_NEXT_WAITING to SCB_LIST_HEAD in scbs being added to
the waiting scb list. This is a change in how the list code works to
facilitate some planned work in the reset code.
7) The fields in the SCB have be re-arranged to be quad-word aligned.
8) The inb code has been rewritten to catch phasemisses and be more efficient.
9) Go back to "snooping the bus" to determine if the incomming identify
message will be followed by a simple queue message. Its much faster than
doing a search through the SCBs.
10) Implement better tag range checking for incomming tags.
11) Make sdtr_to_rate more accurate (use 25 instead of 24 in calculations -
must have been asleep that night).
12) Rearrange some routines to reduce code complexity and size.
13) Update comments and formatting.
14) Fixed bugs I've forgotten about??
Reviewed by: David Greenman <davidg@FreeBSD.org>