RFC 8221 does not outright ban 3des as the algorithms deprecated for
13 in r348205, but it is listed as a SHOULD NOT and will likely be a
MUST NOT by the time 13 ships.
Discussed with: bjk
MFC after: 1 week
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24341
Add some prose and a diagram describing the layout of the cipher IV
for AES-CTR and AES-GCM and how it relates to the ESP IV stored in the
packet after the ESP header. Also, remove an XXX comment about the
initial block counter value used for AES-CTR in esp_output as the
current code matches the RFC (and the equivalent code in esp_input
didn't have the XXX comment).
Discussed with: cem
This is the only place that uses CRYPTO_F_IV_GENERATE. All crypto
drivers currently duplicate the same boilerplate code to handle this
case. Doing the generation directly removes complexity from drivers.
It also simplifies support for separate input and output buffers.
Reviewed by: cem
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24449
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
r354748-354750 replaced the KAME macros with m_pulldown() calls.
Contrary to the rest of the network stack m_len checks before m_pulldown()
were not put in placed (see r354748).
Put these m_len checks in place for now (to go along with the style of the
network stack since the initial commits). These are not put in for
performance but to avoid an error scenario (even though it also will help
performance at the moment as it avoid allocating an extra mbuf; not because
of the unconditional function call).
The observed error case went like this:
(1) an mbuf with M_EXT arrives and we call m_pullup() unconditionally on it.
(2) m_pullup() will call m_get() unless the requested length is larger than
MHLEN (in which case it'll m_freem() the perfectly fine mbuf) and migrate the
requested length of data and pkthdr into the new mbuf.
(3) If m_get() succeeds, a further m_pullup() call going over MHLEN will fail.
This was observed with failing auto-configuration as an RA packet of
200 bytes exceeded MHLEN and the m_pullup() called from nd6_ra_input()
dropped the mbuf.
(Re-)adding the m_len checks before m_pullup() calls avoids this problems
with mbufs using external storage for now.
MFC after: 3 weeks
Sponsored by: Netflix
IPPROTO_NONE.
According to RFC4303 2.6 they should be silently dropped.
Submitted by: aurelien.cazuc.external_stormshield.eu
MFC after: 10 days
Sponsored by: Stormshield
Differential Revision: https://reviews.freebsd.org/D22557
In a few places we have IP6_EXTHDR_GET() left in upper layer protocols.
The IP6_EXTHDR_GET() macro might perform an m_pulldown() in case the data
fragment is not contiguous.
Convert these last remaining instances into m_pullup()s instead.
In CARP, for example, we will a few lines later call m_pullup() anyway,
the IPsec code coming from OpenBSD would otherwise have done the m_pullup()
and are copying the data a bit later anyway, so pulling it in seems no
better or worse.
Note: this leaves very few m_pulldown() cases behind in the tree and we
might want to consider removing them as well to make mbuf management
easier again on a path to variable size mbufs, especially given
m_pulldown() still has an issue not re-checking M_WRITEABLE().
Reviewed by: gallatin
MFC after: 8 weeks
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D22335
New sysctl/tunables can now set the interval (in seconds) between
rate-limited crypto warnings. The new sysctls are:
- kern.cryptodev_warn_interval for /dev/crypto
- net.inet.ipsec.crypto_warn_interval for IPsec
- kern.kgssapi_warn_interval for KGSSAPI
Reviewed by: cem
MFC after: 1 month
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D20555
All of these algorithms are either explicitly marked MUST NOT, or they
are implicitly MUST NOTs by virtue of not being included in IETF's
list of protocols at all despite having assignments from IANA.
Specifically, this adds warnings for the following ciphers:
- des-cbc
- blowfish-cbc
- cast128-cbc
- des-deriv
- des-32iv
- camellia-cbc
Warnings for the following authentication algorithms are also added:
- hmac-md5
- keyed-md5
- keyed-sha1
- hmac-ripemd160
Reviewed by: cem, gnn
MFC after: 3 days
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D20340
Track session objects in the framework, and pass handles between the
framework (OCF), consumers, and drivers. Avoid redundancy and complexity in
individual drivers by allocating session memory in the framework and
providing it to drivers in ::newsession().
Session handles are no longer integers with information encoded in various
high bits. Use of the CRYPTO_SESID2FOO() macros should be replaced with the
appropriate crypto_ses2foo() function on the opaque session handle.
Convert OCF drivers (in particular, cryptosoft, as well as myriad others) to
the opaque handle interface. Discard existing session tracking as much as
possible (quick pass). There may be additional code ripe for deletion.
Convert OCF consumers (ipsec, geom_eli, krb5, cryptodev) to handle-style
interface. The conversion is largely mechnical.
The change is documented in crypto.9.
Inspired by
https://lists.freebsd.org/pipermail/freebsd-arch/2018-January/018835.html .
No objection from: ae (ipsec portion)
Reported by: jhb
When using hardware crypto engines, the callback functions used to handle
an IPsec packet after it has been encrypted or decrypted can be invoked
asynchronously from a worker thread that is not associated with a vnet.
Extend 'struct xform_data' to include a vnet pointer and save the current
vnet in this new member when queueing crypto requests in IPsec. In the
IPsec callback routines, use the new member to set the current vnet while
processing the modified packet.
This fixes a panic when using hardware offload such as ccr(4) with IPsec
after VIMAGE was enabled in GENERIC.
Reported by: Sony Arpita Das and Harsh Jain @ Chelsio
Reviewed by: bz
MFC after: 1 week
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D14763
This reduces noise when kernel is compiled by newer GCC versions,
such as one used by external toolchain ports.
Reviewed by: kib, andrew(sys/arm and sys/arm64), emaste(partial), erj(partial)
Reviewed by: jhb (sys/dev/pci/* sys/kern/vfs_aio.c and sys/kern/kern_synch.c)
Differential Revision: https://reviews.freebsd.org/D10385
fine when a lot of different flows to be ciphered/deciphered are involved.
However, when a software crypto driver is used, there are
situations where we could benefit from making crypto(9) multi threaded:
- a single flow is to be ciphered: only one thread is used to cipher it,
- a single ESP flow is to be deciphered: only one thread is used to
decipher it.
The idea here is to call crypto(9) using a new mode (CRYPTO_F_ASYNC) to
dispatch the crypto jobs on multiple threads, if the underlying crypto
driver is working in synchronous mode.
Another flag is added (CRYPTO_F_ASYNC_KEEPORDER) to make crypto(9)
dispatch the crypto jobs in the order they are received (an additional
queue/thread is used), so that the packets are reinjected in the network
using the same order they were posted.
A new sysctl net.inet.ipsec.async_crypto can be used to activate
this new behavior (disabled by default).
Submitted by: Emeric Poupon <emeric.poupon@stormshield.eu>
Reviewed by: ae, jmg, jhb
Differential Revision: https://reviews.freebsd.org/D10680
Sponsored by: Stormshield
is not specified.
Due to the long call chain IPsec code can produce the kernel stack
exhaustion on the i386 architecture. The debugging code usually is not
used, but it requires a lot of stack space to keep buffers for strings
formatting. This patch conditionally defines macros to disable building
of IPsec debugging code.
IPsec currently has two sysctl variables to configure debug output:
* net.key.debug variable is used to enable debug output for PF_KEY
protocol. Such debug messages are produced by KEYDBG() macro and
usually they can be interesting for developers.
* net.inet.ipsec.debug variable is used to enable debug output for
DPRINTF() macro and ipseclog() function. DPRINTF() macro usually
is used for development debugging. ipseclog() function is used for
debugging by administrator.
The patch disables KEYDBG() and DPRINTF() macros, and formatting buffers
declarations when IPSEC_DEBUG is not present in kernel config. This reduces
stack requirement for up to several hundreds of bytes.
The net.inet.ipsec.debug variable still can be used to enable ipseclog()
messages by administrator.
PR: 219476
Reported by: eugen
No objection from: #network
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D10869
There are two possible ways how crypto callback are called: directly from
caller and deffered from crypto thread.
For outbound packets the direct call chain is the following:
IPSEC_OUTPUT() method -> ipsec[46]_common_output() ->
-> ipsec[46]_perform_request() -> xform_output() ->
-> crypto_dispatch() -> crypto_invoke() -> crypto_done() ->
-> xform_output_cb() -> ipsec_process_done() -> ip[6]_output().
The SA and SP references are held while crypto processing is not finished.
The error handling code wrongly expected that crypto callback always called
from the crypto thread context, and it did references releasing in
xform_output_cb(). But when the crypto callback called directly, in case of
error the error handling code in ipsec[46]_perform_request() also did
references releasing.
To fix this, remove error handling from ipsec[46]_perform_request() and do it
in xform_output() before crypto_dispatch().
MFC after: 10 days
There are two possible ways how crypto callback are called: directly from
caller and deffered from crypto thread.
For inbound packets the direct call chain is the following:
IPSEC_INPUT() method -> ipsec_common_input() -> xform_input() ->
-> crypto_dispatch() -> crypto_invoke() -> crypto_done() ->
-> xform_input_cb() -> ipsec[46]_common_input_cb() -> netisr_queue().
The SA reference is held while crypto processing is not finished.
The error handling code wrongly expected that crypto callback always called
from the crypto thread context, and it did SA reference releasing in
xform_input_cb(). But when the crypto callback called directly, in case of
error (e.g. data authentification failed) the error handling in
ipsec_common_input() also did SA reference releasing.
To fix this, remove error handling from ipsec_common_input() and do it
in xform_input() before crypto_dispatch().
PR: 219356
MFC after: 10 days
Small summary
-------------
o Almost all IPsec releated code was moved into sys/netipsec.
o New kernel modules added: ipsec.ko and tcpmd5.ko. New kernel
option IPSEC_SUPPORT added. It enables support for loading
and unloading of ipsec.ko and tcpmd5.ko kernel modules.
o IPSEC_NAT_T option was removed. Now NAT-T support is enabled by
default. The UDP_ENCAP_ESPINUDP_NON_IKE encapsulation type
support was removed. Added TCP/UDP checksum handling for
inbound packets that were decapsulated by transport mode SAs.
setkey(8) modified to show run-time NAT-T configuration of SA.
o New network pseudo interface if_ipsec(4) added. For now it is
build as part of ipsec.ko module (or with IPSEC kernel).
It implements IPsec virtual tunnels to create route-based VPNs.
o The network stack now invokes IPsec functions using special
methods. The only one header file <netipsec/ipsec_support.h>
should be included to declare all the needed things to work
with IPsec.
o All IPsec protocols handlers (ESP/AH/IPCOMP protosw) were removed.
Now these protocols are handled directly via IPsec methods.
o TCP_SIGNATURE support was reworked to be more close to RFC.
o PF_KEY SADB was reworked:
- now all security associations stored in the single SPI namespace,
and all SAs MUST have unique SPI.
- several hash tables added to speed up lookups in SADB.
- SADB now uses rmlock to protect access, and concurrent threads
can do SA lookups in the same time.
- many PF_KEY message handlers were reworked to reflect changes
in SADB.
- SADB_UPDATE message was extended to support new PF_KEY headers:
SADB_X_EXT_NEW_ADDRESS_SRC and SADB_X_EXT_NEW_ADDRESS_DST. They
can be used by IKE daemon to change SA addresses.
o ipsecrequest and secpolicy structures were cardinally changed to
avoid locking protection for ipsecrequest. Now we support
only limited number (4) of bundled SAs, but they are supported
for both INET and INET6.
o INPCB security policy cache was introduced. Each PCB now caches
used security policies to avoid SP lookup for each packet.
o For inbound security policies added the mode, when the kernel does
check for full history of applied IPsec transforms.
o References counting rules for security policies and security
associations were changed. The proper SA locking added into xform
code.
o xform code was also changed. Now it is possible to unregister xforms.
tdb_xxx structures were changed and renamed to reflect changes in
SADB/SPDB, and changed rules for locking and refcounting.
Reviewed by: gnn, wblock
Obtained from: Yandex LLC
Relnotes: yes
Sponsored by: Yandex LLC
Differential Revision: https://reviews.freebsd.org/D9352
Since the previous algorithm, based on bit shifting, does not scale
with large replay windows, the algorithm used here is based on
RFC 6479: IPsec Anti-Replay Algorithm without Bit Shifting.
The replay window will be fast to be updated, but will cost as many bits
in RAM as its size.
The previous implementation did not provide a lock on the replay window,
which may lead to replay issues.
Reviewed by: ae
Obtained from: emeric.poupon@stormshield.eu
Sponsored by: Stormshield
Differential Revision: https://reviews.freebsd.org/D8468
Set zero ivsize for enc_xform_null and remove special handling from
xform_esp.c.
Reviewed by: gnn
Differential Revision: https://reviews.freebsd.org/D1503
Currently we perform crypto requests for IPSEC synchronous for most of
crypto providers (software, aesni) and only VIA padlock calls crypto
callback asynchronous. In synchronous mode it is possible, that security
policy will be removed during the processing crypto request. And crypto
callback will release the last reference to SP. Then upon return into
ipsec[46]_process_packet() IPSECREQUEST_UNLOCK() will be called to already
freed request. To prevent this we will take extra reference to SP.
PR: 201876
Sponsored by: Yandex LLC
defines the keys differently than NIST does, so we have to muck with
key lengths and nonce/IVs to be standard compliant...
Remove the iv from secasvar as it was unused...
Add a counter protected by a mutex to ensure that the counter for GCM
and ICM will never be repeated.. This is a requirement for security..
I would use atomics, but we don't have a 64bit one on all platforms..
Fix a bug where IPsec was depending upon the OCF to ensure that the
blocksize was always at least 4 bytes to maintain alignment... Move
this logic into IPsec so changes to OCF won't break IPsec...
In one place, espx was always non-NULL, so don't test that it's
non-NULL before doing work..
minor style cleanups...
drop setting key and klen as they were not used...
Enforce that OCF won't pass invalid key lengths to AES that would
panic the machine...
This was has been tested by others too... I tested this against
NetBSD 6.1.5 using mini-test suite in
https://github.com/jmgurney/ipseccfgs and the only things that don't
pass are keyed md5 and sha1, and 3des-deriv (setkey syntax error),
all other modes listed in setkey's man page... The nice thing is
that NetBSD uses setkey, so same config files were used on both...
Reviewed by: gnn
use CTASSERTs now that we have them...
Replace a draft w/ RFC that's over 10 years old.
Note that _AALG and _EALG do not need to match what the IKE daemons
think they should be.. This is part of the KABI... I decided to
renumber AESCTR, but since we've never had working AESCTR mode, I'm
not really breaking anything.. and it shortens a loop by quite
a bit..
remove SKIPJACK IPsec support... SKIPJACK never made it out of draft
(in 1999), only has 80bit key, NIST recommended it stop being used
after 2010, and setkey nor any of the IKE daemons I checked supported
it...
jmgurney/ipsecgcm: a357a33, c75808b, e008669, b27b6d6
Reviewed by: gnn (earlier version)
problems that was introduced in r285336... I have verified that
HMAC-SHA2-256 both ah only and w/ AES-CBC interoperate w/ a NetBSD
6.1.5 vm...
Reviewed by: gnn
mode and with hardware support on systems that have AESNI instructions.
Differential Revision: D2936
Reviewed by: jmg, eri, cognet
Sponsored by: Rubicon Communications (Netgate)
When we are passing mbuf to IPSec processing via ipsec[46]_process_packet(),
we hold one reference to security policy and release it just after return
from this function. But IPSec processing can be deffered and when we release
reference to security policy after ipsec[46]_process_packet(), user can
delete this security policy from SPDB. And when IPSec processing will be
done, xform's callback function will do access to already freed memory.
To fix this move KEY_FREESP() into callback function. Now IPSec code will
release reference to SP after processing will be finished.
Differential Revision: https://reviews.freebsd.org/D2324
No objections from: #network
Sponsored by: Yandex LLC
additional arguments - buffer and size of this buffer.
ipsec_address() is used to convert sockaddr structure to presentation
format. The IPv6 part of this function returns pointer to the on-stack
buffer and at the moment when it will be used by caller, it becames
invalid. IPv4 version uses 4 static buffers and returns pointer to
new buffer each time when it called. But anyway it is still possible
to get corrupted data when several threads will use this function.
ipsec_logsastr() is used to format string about SA entry. It also
uses static buffer and has the same problem with concurrent threads.
To fix these problems add the buffer pointer and size of this
buffer to arguments. Now each caller will pass buffer and its size
to these functions. Also convert all places where these functions
are used (except disabled code).
And now ipsec_address() uses inet_ntop() function from libkern.
PR: 185996
Differential Revision: https://reviews.freebsd.org/D2321
Reviewed by: gnn
Sponsored by: Yandex LLC
Unfold the IPSEC_COMMON_INPUT_CB() macro in xform_{ah,esp,ipcomp}.c
to not need three different versions depending on INET, INET6 or both.
Mark two places preparing for not yet supported functionality with IPv6.
Reviewed by: gnn
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
MFC after: 4 days
- Remove contention on ISR during the crypto operation by using rwlock(9).
- Remove a second lookup of the SA in the callback.
Gain on 6 cores CPU with SHA1/AES128 can be up to 30%.
Reviewed by: vanhu
MFC after: 1 month
DPCPU_DEFINE and VNET_DEFINE macros, as these cause problems for various
people working on the affected files. A better long-term solution is
still being considered. This reversal may give some modules empty
set_pcpu or set_vnet sections, but these are harmless.
Changes reverted:
------------------------------------------------------------------------
r215318 | dim | 2010-11-14 21:40:55 +0100 (Sun, 14 Nov 2010) | 4 lines
Instead of unconditionally emitting .globl's for the __start_set_xxx and
__stop_set_xxx symbols, only emit them when the set_vnet or set_pcpu
sections are actually defined.
------------------------------------------------------------------------
r215317 | dim | 2010-11-14 21:38:11 +0100 (Sun, 14 Nov 2010) | 3 lines
Apply the STATIC_VNET_DEFINE and STATIC_DPCPU_DEFINE macros throughout
the tree.
------------------------------------------------------------------------
r215316 | dim | 2010-11-14 21:23:02 +0100 (Sun, 14 Nov 2010) | 2 lines
Add macros to define static instances of VNET_DEFINE and DPCPU_DEFINE.
"Whitspace" churn after the VIMAGE/VNET whirls.
Remove the need for some "init" functions within the network
stack, like pim6_init(), icmp_init() or significantly shorten
others like ip6_init() and nd6_init(), using static initialization
again where possible and formerly missed.
Move (most) variables back to the place they used to be before the
container structs and VIMAGE_GLOABLS (before r185088) and try to
reduce the diff to stable/7 and earlier as good as possible,
to help out-of-tree consumers to update from 6.x or 7.x to 8 or 9.
This also removes some header file pollution for putatively
static global variables.
Revert VIMAGE specific changes in ipfilter::ip_auth.c, that are
no longer needed.
Reviewed by: jhb
Discussed with: rwatson
Sponsored by: The FreeBSD Foundation
Sponsored by: CK Software GmbH
MFC after: 6 days
may come from outside without being discarded before.
Submitted by: aurelien.ansel@netasq.com
Reviewed by: bz (secteam)
Obtained from: NETASQ
MFC after: 1m