LPC devices. Among other things, the LPC serial ports now appear as
ACPI devices.
- Move the info for the top-level PCI bus into the PCI emulation code and
add ResourceProducer entries for the memory ranges decoded by the bus
for memory BARs.
- Add a framework to allow each PCI emulation driver to optionally write
an entry into the DSDT under the \_SB_.PCI0 namespace. The LPC driver
uses this to write a node for the LPC bus (\_SB_.PCI0.ISA).
- Add a linker set to allow any LPC devices to write entries into the
DSDT below the LPC node.
- Move the existing DSDT block for the RTC to the RTC driver.
- Add DSDT nodes for the AT PIC, the 8254 ISA timer, and the LPC UART
devices.
- Add a "SuperIO" device under the LPC node to claim "system resources"
aling with a linker set to allow various drivers to add IO or memory
ranges that should be claimed as a system resource.
- Add system resource entries for the extended RTC IO range, the registers
used for ACPI power management, the ELCR, PCI interrupt routing register,
and post data register.
- Add various helper routines for generating DSDT entries.
Reviewed by: neel (earlier version)
to SIGTERM when ACPI is enabled. Sending SIGTERM to the hypervisor when an
ACPI-aware OS is running will now trigger a soft-off allowing for a graceful
shutdown of the guest.
- Move constants for ACPI-related registers to acpi.h.
- Implement an SMI_CMD register with commands to enable and disable ACPI.
Currently the only change when ACPI is enabled is to enable the virtual
power button via SIGTERM.
- Implement a fixed-feature power button when ACPI is enabled by asserting
PWRBTN_STS in PM1_EVT when SIGTERM is received.
- Add support for EVFILT_SIGNAL events to mevent.
- Implement support for the ACPI system command interrupt (SCI) and assert
it when needed based on the values in PM1_EVT. Mark the SCI as active-low
and level triggered in the MADT and MP Table.
- Mark PCI interrupts in the MP Table as active-low in addition to level
triggered.
Reviewed by: neel
- Implement the PM1_EVT and PM1_CTL registers required by ACPI.
The PM1_EVT register is mostly a dummy as bhyve doesn't support any
of the hardware-initiated events. The only bit of PM1_CNT that is
implemented are the sleep request bits (SPL_EN and SLP_TYP) which
request a graceful power off for S5. In particular, for S5, bhyve
exits with a non-zero value which terminates the loop in vmrun.sh.
- Emulate the Reset Control register at I/O port 0xcf9 and advertise
it as the reset register via ACPI.
- Advertise an _S5 package.
- Extend the in/out interface to allow an in/out handler to request
that the hypervisor trigger a reset or power-off.
- While here, note that all vCPUs in a guest support C1 ("hlt").
Reviewed by: neel (earlier version)
- Add a generic routine to trigger an LVT interrupt that supports both
fixed and NMI delivery modes.
- Add an ioctl and bhyvectl command to trigger local interrupts inside a
guest. In particular, a global NMI similar to that raised by SERR# or
PERR# can be simulated by asserting LINT1 on all vCPUs.
- Extend the LVT table in the vCPU local APIC to support CMCI.
- Flesh out the local APIC error reporting a bit to cache errors and
report them via ESR when ESR is written to. Add support for asserting
the error LVT when an error occurs. Raise illegal vector errors when
attempting to signal an invalid vector for an interrupt or when sending
an IPI.
- Ignore writes to reserved bits in LVT entries.
- Export table entries the MADT and MP Table advertising the stock x86
config of LINT0 set to ExtInt and LINT1 wired to NMI.
Reviewed by: neel (earlier version)
commit level triggered interrupts would work as long as the pin was not shared
among multiple interrupt sources.
The vlapic now keeps track of level triggered interrupts in the trigger mode
register and will forward the EOI for a level triggered interrupt to the
vioapic. The vioapic in turn uses the EOI to sample the level on the pin and
re-inject the vector if the pin is still asserted.
The vhpet is the first consumer of level triggered interrupts and advertises
that it can generate interrupts on pins 20 through 23 of the vioapic.
Discussed with: grehan@
actual value read by the guest from the device. The IOAPIC ID is now set to
zero in both MPtable/ACPI tables as well as in the ioapic device emulation.
Pointed out by: grehan@
bhyve supports a single timer block with 8 timers. The timers are all 32-bit
and capable of being operated in periodic mode. All timers support interrupt
delivery using MSI. Timers 0 and 1 also support legacy interrupt routing.
At the moment the timers are not connected to any ioapic pins but that will
be addressed in a subsequent commit.
This change is based on a patch from Tycho Nightingale (tycho.nightingale@pluribusnetworks.com).
pin 2 of the IOAPIC.
Add an 'Interrupt Source Override' entry to the MADT to describe this
and start asserting interrupts on pin 2 in the 8254 device model.
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
This should be sufficient for 10.0 and will do
until forthcoming work to avoid limitations
in this area is complete.
Thanks to Bela Lubkin at tidalscale for the
headsup on the apic/cpu id/io apic ASL parameters
that are actually hex values and broke when
written as decimal when 11 vCPUs were configured.
Approved by: re@
command line option "-m <memsize in MB>" to specify the memory size.
Prior to this change the user needed to explicitly specify the amount of
memory allocated below 4G (-m <lowmem>) and the amount above 4G (-M <highmem>).
The "-M" option is no longer supported by 'bhyveload' and 'bhyve'.
The start of the PCI hole is fixed at 3GB and cannot be directly changed
using command line options. However it is still possible to change this in
special circumstances via the 'vm_set_lowmem_limit()' API provided by
libvmmapi.
Submitted by: Dinakar Medavaram (initial version)
Reviewed by: grehan
Obtained from: NetApp
This seems prudent to do in its own right but it also opens up the possibility
of not having to mmap the entire guest address space in the 'bhyve' process
context.
Discussed with: grehan
Obtained from: NetApp
bhyve is intended to be a generic hypervisor, and not FreeBSD-specific.
(renaming internal routines will come later)
Reviewed by: neel
Obtained from: NetApp
The -A option will create the minimal set of required ACPI tables in
guest memory. Since ACPI mandates an IOAPIC, the -I option must also
be used.
Template ASL files are created, and then passed to the iasl compiler
to generate AML files. These are then loaded into guest physical mem.
In support of this, the ACPI PM timer is implemented, in 32-bit mode.
Tested on 7.4/8.*/9.*/10-CURRENT.
Reviewed by: neel
Obtained from: NetApp
Discussed with: jhb (a long while back)