Uses of commas instead of a semicolons can easily go undetected. The comma
can serve as a statement separator but this shouldn't be abused when
statements are meant to be standalone.
Detected with devel/coccinelle following a hint from DragonFlyBSD.
MFC after: 1 month
per-protocol. This reduces the number scsi symbols references by
cam_xpt significantly, and eliminates all ata / nvme symbols. There's
still some NVME / ATA specific code for dealing with XPT_NVME_IO and
XPT_ATA_IO respectively, and a bunch of scsi-specific code, but this
is progress.
Differential Revision: https://reviews.freebsd.org/D7289
eliminates the need to special case everything in cam_xpt for new
transports. It is now a failure to not have a transport object when
registering the bus as well. You can still, however, create a
transport that's unspecified (XPT_)
Differential Revision: https://reviews.freebsd.org/D7289
In the case where cam_iosched_init() fails, the ada and da softcs were leaked.
Instead, free them.
Reported by: Coverity
CID: 1356039
Sponsored by: EMC / Isilon Storage Division
o Some Samsung drives do not support the ATA READ LOG EXT or READ
LOG DMA EXT commands, despite indicating that they do in their
IDENTIFY data. So, fix this in two ways:
1. Only start the log directory probe (ADA_STATE_LOGDIR) if
the drive claims to be an SMR drive in the first place.
We don't need to do the extra probing for other devices.
This will also serve to prevent problems with other
drives that have the same issue.
2. Add quirks for the two Samsung drives that have been
reported so far (thanks to Oleg Nauman and Alex Petrov).
If there is a reason to do a Read Log later on, we will
know that it doesn't work on these drives.
o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as
drive managed. They don't report this in their Identify data.
sys/cam/ata/ata_da.c:
Add two new quirks:
1. ADA_Q_LOG_BROKEN, for drives that claim to support Read
Log but don't really.
2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but
don't report it. This can matter for software that
wants to know when it should make an extra effort to
write sequentially.
Record two Samsung drives that don't support Read Log, and
one Seagate drive that doesn't report that it is a SMR drive.
The Seagate drive is already recorded in the da(4) driver.
We may have to come up with a similar solution in the da(4)
driver for SATA drives that don't properly support Read Log.
In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the
device has the LOG_BROKEN quirk set. Also, look at the
SMR_DM quirk and set the device type accordingly if it is
actually a drive managed drive.
When deciding whether to go into the LOGDIR probe state,
look to see whether the device claims to be an SMR device.
If not, don't bother with the LOGDIR probe state.
Sponsored by: Spectra Logic
I broke broke the quirk in the ada(4) driver disabling NCQ trim support
in revision 300207. The support flags were set before the quirks were
loaded.
sys/cam/ata/ata_da.c:
Call adasetflags() after loading quirks, so that we'll set the
flags accurately.
Sponsored by: Spectra Logic
This change includes support for SCSI SMR drives (which conform to the
Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to
the Zoned ATA Command Set or ZAC spec) behind SAS expanders.
This includes full management support through the GEOM BIO interface, and
through a new userland utility, zonectl(8), and through camcontrol(8).
This is now ready for filesystems to use to detect and manage zoned drives.
(There is no work in progress that I know of to use this for ZFS or UFS, if
anyone is interested, let me know and I may have some suggestions.)
Also, improve ATA command passthrough and dispatch support, both via ATA
and ATA passthrough over SCSI.
Also, add support to camcontrol(8) for the ATA Extended Power Conditions
feature set. You can now manage ATA device power states, and set various
idle time thresholds for a drive to enter lower power states.
Note that this change cannot be MFCed in full, because it depends on
changes to the struct bio API that break compatilibity. In order to
avoid breaking the stable API, only changes that don't touch or depend on
the struct bio changes can be merged. For example, the camcontrol(8)
changes don't depend on the new bio API, but zonectl(8) and the probe
changes to the da(4) and ada(4) drivers do depend on it.
Also note that the SMR changes have not yet been tested with an actual
SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports
ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT
layer, so any testing help would be appreciated. These changes have been
tested with Seagate Host Aware SATA drives attached to both SAS and SATA
controllers. Also, I do not have any SATA Host Managed devices, and I
suspect that it may take additional (hopefully minor) changes to support
them.
Thanks to Seagate for supplying the test hardware and answering questions.
sbin/camcontrol/Makefile:
Add epc.c and zone.c.
sbin/camcontrol/camcontrol.8:
Document the zone and epc subcommands.
sbin/camcontrol/camcontrol.c:
Add the zone and epc subcommands.
Add auxiliary register support to build_ata_cmd(). Make sure to
set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA
flags as appropriate for ATA commands.
Add a new get_ata_status() function to parse ATA result from SCSI
sense descriptors (for ATA passthrough over SCSI) and ATA I/O
requests.
sbin/camcontrol/camcontrol.h:
Update the build_ata_cmd() prototype
Add get_ata_status(), zone(), and epc().
sbin/camcontrol/epc.c:
Support for ATA Extended Power Conditions features. This includes
support for all features documented in the ACS-4 Revision 12
specification from t13.org (dated February 18, 2016).
The EPC feature set allows putting a drive into a power power mode
immediately, or setting timeouts so that the drive will
automatically enter progressively lower power states after various
idle times.
sbin/camcontrol/fwdownload.c:
Update the firmware download code for the new build_ata_cmd()
arguments.
sbin/camcontrol/zone.c:
Implement support for Shingled Magnetic Recording (SMR) drives
via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA
Command Set (ZAC).
These specs were developed in concert, and are functionally
identical. The primary differences are due to SCSI and ATA
differences. (SCSI is big endian, ATA is little endian, for
example.)
This includes support for all commands defined in the ZBC and
ZAC specs.
sys/cam/ata/ata_all.c:
Decode a number of additional ATA command names in ata_op_string().
Add a new CCB building function, ata_read_log().
Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building
functions. These support both DMA and NCQ encapsulation.
sys/cam/ata/ata_all.h:
Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and
ata_zac_mgmt_in().
sys/cam/ata/ata_da.c:
Revamp the ada(4) driver to support zoned devices.
Add four new probe states to gather information needed for zone
support.
Add a new adasetflags() function to avoid duplication of large
blocks of flag setting between the async handler and register
functions.
Add new sysctl variables that describe zone support and paramters.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
sys/cam/scsi/scsi_all.c:
Add command descriptions for the ZBC IN/OUT commands.
Add descriptions for ZBC Host Managed devices.
Add a new function, scsi_ata_pass() to do ATA passthrough over
SCSI. This will eventually replace scsi_ata_pass_16() -- it
can create the 12, 16, and 32-byte variants of the ATA
PASS-THROUGH command, and supports setting all of the
registers defined as of SAT-4, Revision 5 (March 11, 2016).
Change scsi_ata_identify() to use scsi_ata_pass() instead of
scsi_ata_pass_16().
Add a new scsi_ata_read_log() function to facilitate reading
ATA logs via SCSI.
sys/cam/scsi/scsi_all.h:
Add the new ATA PASS-THROUGH(32) command CDB. Add extended and
variable CDB opcodes.
Add Zoned Block Device Characteristics VPD page.
Add ATA Return SCSI sense descriptor.
Add prototypes for scsi_ata_read_log() and scsi_ata_pass().
sys/cam/scsi/scsi_da.c:
Revamp the da(4) driver to support zoned devices.
Add five new probe states, four of which are needed for ATA
devices.
Add five new sysctl variables that describe zone support and
parameters.
The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC
devices when they are attached via a SCSI to ATA Translation (SAT)
layer. Since ZBC -> ZAC translation is a new feature in the T10
SAT-4 spec, most SATA drives will be supported via ATA commands
sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will
prefer the ZBC interface, if it is available, for performance
reasons, but will use the ATA PASS-THROUGH interface to the ZAC
command set if the SAT layer doesn't support translation yet.
As I mentioned above, ZBC command support is untested.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
Add scsi_zbc_in() and scsi_zbc_out() CCB building functions.
Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB
building functions. Note that these have return values, unlike
almost all other CCB building functions in CAM. The reason is
that they can fail, depending upon the particular combination
of input parameters. The primary failure case is if the user
wants NCQ, but fails to specify additional CDB storage. NCQ
requires using the 32-byte version of the SCSI ATA PASS-THROUGH
command, and the current CAM CDB size is 16 bytes.
sys/cam/scsi/scsi_da.h:
Add ZBC IN and ZBC OUT CDBs and opcodes.
Add SCSI Report Zones data structures.
Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and
scsi_ata_zac_mgmt_in() prototypes.
sys/dev/ahci/ahci.c:
Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver.
ahci_setup_fis() previously set the top bits of the sector count
register in the FIS to 0 for FPDMA commands. This is okay for
read and write, because the PRIO field is in the only thing in
those bits, and we don't implement that further up the stack.
But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that
byte, so it needs to be transmitted to the drive.
In ahci_setup_fis(), always set the the top 8 bits of the
sector count register. We need it in both the standard
and NCQ / FPDMA cases.
sys/geom/eli/g_eli.c:
Pass BIO_ZONE commands through the GELI class.
sys/geom/geom.h:
Add g_io_zonecmd() prototype.
sys/geom/geom_dev.c:
Add new DIOCZONECMD ioctl, which allows sending zone commands to
disks.
sys/geom/geom_disk.c:
Add support for BIO_ZONE commands.
sys/geom/geom_disk.h:
Add a new flag, DISKFLAG_CANZONE, that indicates that a given
GEOM disk client can handle BIO_ZONE commands.
sys/geom/geom_io.c:
Add a new function, g_io_zonecmd(), that handles execution of
BIO_ZONE commands.
Add permissions check for BIO_ZONE commands.
Add command decoding for BIO_ZONE commands.
sys/geom/geom_subr.c:
Add DDB command decoding for BIO_ZONE commands.
sys/kern/subr_devstat.c:
Record statistics for REPORT ZONES commands. Note that the
number of bytes transferred for REPORT ZONES won't quite match
what is received from the harware. This is because we're
necessarily counting bytes coming from the da(4) / ada(4) drivers,
which are using the disk_zone.h interface to communicate up
the stack. The structure sizes it uses are slightly different
than the SCSI and ATA structure sizes.
sys/sys/ata.h:
Add many bit and structure definitions for ZAC, NCQ, and EPC
command support.
sys/sys/bio.h:
Convert the bio_cmd field to a straight enumeration. This will
yield more space for additional commands in the future. After
change r297955 and other related changes, this is now possible.
Converting to an enumeration will also prevent use as a bitmask
in the future.
sys/sys/disk.h:
Define the DIOCZONECMD ioctl.
sys/sys/disk_zone.h:
Add a new API for managing zoned disks. This is very close to
the SCSI ZBC and ATA ZAC standards, but uses integers in native
byte order instead of big endian (SCSI) or little endian (ATA)
byte arrays.
This is intended to offer to the complete feature set of the ZBC
and ZAC disk management without requiring the application developer
to include SCSI or ATA headers. We also use one set of headers
for ioctl consumers and kernel bio-level consumers.
sys/sys/param.h:
Bump __FreeBSD_version for sys/bio.h command changes, and inclusion
of SMR support.
usr.sbin/Makefile:
Add the zonectl utility.
usr.sbin/diskinfo/diskinfo.c
Add disk zoning capability to the 'diskinfo -v' output.
usr.sbin/zonectl/Makefile:
Add zonectl makefile.
usr.sbin/zonectl/zonectl.8
zonectl(8) man page.
usr.sbin/zonectl/zonectl.c
The zonectl(8) utility. This allows managing SCSI or ATA zoned
disks via the disk_zone.h API. You can report zones, reset write
pointers, get parameters, etc.
Sponsored by: Spectra Logic
Differential Revision: https://reviews.freebsd.org/D6147
Reviewed by: wblock (documentation)
can handle it, and add the code to add it to the FIS that's sent to
the drive. The mvs driver is the only other ATA driver in the system,
and its hardware doesn't appear to support setting the Auxiliary
register.
Differential Revision: https://reviews.freebsd.org/D5598
transactions, but that value isn't used. It's bogusly used to report
in devstat, due to a cut and paste error from SCSI. Mark it as unused
in cam_fill_ataio. Reclaim the memory as a new ata_flags. In addition,
tag_id and init_id are completely unused, so reclaim those as 'unused'
now too. These were needlessly copied when ata was split from scsi.
This allows us, in the future, to create structures that can
communicate AUXILIARY regsiter to the SIMs, which cannot be done now.
Differential Revision: https://reviews.freebsd.org/D5598
* Samsung 843T Series SSDs (MZ7WD*)
* Samsung PM851 Series SSDs (MZ7TE*)
* Samsung PM853T Series SSDs (MZ7GE*)
as known having broken NCQ TRIM support as they appear to be based on
the same controller technology as the 840 and 850 series.
I've had at least one report of the PM853 being broken, so err on the
side of caution for the above drives. The PM863/SM863 appears to be
based on a newer controller, so give it the benefit of the doubt.
2015). Correct the M500 firmware versions. EU07 was the engineering
test version, not the release version with the fix. MU07 is the
release version. It's the only Micron firmware version to actually
work. Remove support for EU07.
This brings the blacklist into parity with the Linux blacklist as of
4.5, except for the Micron M500 MU07 entry. I personally tested the
MU07 firmware on 12 machines running 6 drives each with no corruption
in the past 6 months with Netflix production loads. Prior versions of
the M500 firmware wouldn't last more than a few days.
Sponsored by: Netflix, Inc.
as before. The common scheduling bits have moved from inline code in
each of the CAM periph drivers into a library that implements the
default scheduling.
In addition, a number of rate-limiting and I/O preference options can
be enabled by adding CAM_IOSCHED_NETFLIX to your config file. A number
of extra stats are also maintained. CAM_IOSCHED_NETFLIX isn't on by
default because it uses a separate BIO_READ and BIO_WRITE queue, so
doesn't honor BIO_ORDERED between these two types of operations. We
already didn't honor it for BIO_DELETE, and we don't depend on
BIO_ORDERED between reads and writes anywhere in the system (it is
currently used with BIO_FLUSH in ZFS to make sure some writes are
complete before others start and as a poor-man's soft dependency in
one place in UFS where we won't be issuing READs until after the
operation completes). However, out of an abundance of caution, it
isn't enabled by default.
Plus, this also brings in NCQ TRIM support for those SSDs that support
it. A black list is also provided for known rogues that use NCQ trim
as an excuse to corrupt the drive. It was difficult to separate out
into a separate commit.
This code has run in production at Netflix for over a year now.
Sponsored by: Netflix, Inc
Differential Revision: https://reviews.freebsd.org/D4609
_string variants on top of this. This requires a change to the function
signature of ata_res_sbuf(). Its use in the tree seems to be very limited,
and the change makes it more consistent with the rest of the API.
Reviewed by: imp, mav, kenm
Sponsored by: Netflix
Differential Revision: D5940
This adds Samsung PM851 to the list. It can be found in Lenovo Thinkpad
T440 for instance.
Reviewed by: Kevin Bowling <kevin.bowling@kev009.com>,
Jason Wolfe <j@nitrology.com>
Approved by: Kevin Bowling <kevin.bowling@kev009.com>,
Jason Wolfe <j@nitrology.com>
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D5753
Add #defines for ATA_WRITE_UNCORRECTABLE48 and its features. Update the
decoding in ATACAM to recognize the new values. Also improve command
decoding for a few other commands (SMART, NOP, SET_FEATURES). Bring the
decoding in ata(4) up to parity with ATACAM.
Reviewed by: mav, imp
MFC after: 1 month
Sponsored by: Panasas, Inc.
Differential Revision: https://reviews.freebsd.org/D5181
camdd(8) utility.
CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and
completed CCBs may be retrieved via the CAMIOGET ioctl. User
processes can use poll(2) or kevent(2) to get notification when
I/O has completed.
While the existing CAMIOCOMMAND blocking ioctl interface only
supports user virtual data pointers in a CCB (generally only
one per CCB), the new CAMIOQUEUE ioctl supports user virtual and
physical address pointers, as well as user virtual and physical
scatter/gather lists. This allows user applications to have more
flexibility in their data handling operations.
Kernel memory for data transferred via the queued interface is
allocated from the zone allocator in MAXPHYS sized chunks, and user
data is copied in and out. This is likely faster than the
vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in
configurations with many processors (there are more TLB shootdowns
caused by the mapping/unmapping operation) but may not be as fast
as running with unmapped I/O.
The new memory handling model for user requests also allows
applications to send CCBs with request sizes that are larger than
MAXPHYS. The pass(4) driver now limits queued requests to the I/O
size listed by the SIM driver in the maxio field in the Path
Inquiry (XPT_PATH_INQ) CCB.
There are some things things would be good to add:
1. Come up with a way to do unmapped I/O on multiple buffers.
Currently the unmapped I/O interface operates on a struct bio,
which includes only one address and length. It would be nice
to be able to send an unmapped scatter/gather list down to
busdma. This would allow eliminating the copy we currently do
for data.
2. Add an ioctl to list currently outstanding CCBs in the various
queues.
3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do
that.
4. Test physical address support. Virtual pointers and scatter
gather lists have been tested, but I have not yet tested
physical addresses or scatter/gather lists.
5. Investigate multiple queue support. At the moment there is one
queue of commands per pass(4) device. If multiple processes
open the device, they will submit I/O into the same queue and
get events for the same completions. This is probably the right
model for most applications, but it is something that could be
changed later on.
Also, add a new utility, camdd(8) that uses the asynchronous pass(4)
driver interface.
This utility is intended to be a basic data transfer/copy utility,
a simple benchmark utility, and an example of how to use the
asynchronous pass(4) interface.
It can copy data to and from pass(4) devices using any target queue
depth, starting offset and blocksize for the input and ouptut devices.
It currently only supports SCSI devices, but could be easily extended
to support ATA devices.
It can also copy data to and from regular files, block devices, tape
devices, pipes, stdin, and stdout. It does not support queueing
multiple commands to any of those targets, since it uses the standard
read(2)/write(2)/writev(2)/readv(2) system calls.
The I/O is done by two threads, one for the reader and one for the
writer. The reader thread sends completed read requests to the
writer thread in strictly sequential order, even if they complete
out of order. That could be modified later on for random I/O patterns
or slightly out of order I/O.
camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from
the pass(4) driver and also to send request notifications internally.
For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR)
per CAM CCB on the reading side, and a scatter/gather list
(CAM_DATA_SG) on the writing side. In addition to testing both
interfaces, this makes any potential reblocking of I/O easier. No
data is copied between the reader and the writer, but rather the
reader's buffers are split into multiple I/O requests or combined
into a single I/O request depending on the input and output blocksize.
For the file I/O path, camdd(8) also uses a single buffer (read(2),
write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list
(readv(2), writev(2), preadv(2), pwritev(2)) on writes.
Things that would be nice to do for camdd(8) eventually:
1. Add support for I/O pattern generation. Patterns like all
zeros, all ones, LBA-based patterns, random patterns, etc. Right
Now you can always use /dev/zero, /dev/random, etc.
2. Add support for a "sink" mode, so we do only reads with no
writes. Right now, you can use /dev/null.
3. Add support for automatic queue depth probing, so that we can
figure out the right queue depth on the input and output side
for maximum throughput. At the moment it defaults to 6.
4. Add support for SATA device passthrough I/O.
5. Add support for random LBAs and/or lengths on the input and
output sides.
6. Track average per-I/O latency and busy time. The busy time
and latency could also feed in to the automatic queue depth
determination.
sys/cam/scsi/scsi_pass.h:
Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue
and fetch asynchronous CAM CCBs respectively.
Although these ioctls do not have a declared argument, they
both take a union ccb pointer. If we declare a size here,
the ioctl code in sys/kern/sys_generic.c will malloc and free
a buffer for either the CCB or the CCB pointer (depending on
how it is declared). Since we have to keep a copy of the
CCB (which is fairly large) anyway, having the ioctl malloc
and free a CCB for each call is wasteful.
sys/cam/scsi/scsi_pass.c:
Add asynchronous CCB support.
Add two new ioctls, CAMIOQUEUE and CAMIOGET.
CAMIOQUEUE adds a CCB to the incoming queue. The CCB is
executed immediately (and moved to the active queue) if it
is an immediate CCB, but otherwise it will be executed
in passstart() when a CCB is available from the transport layer.
When CCBs are completed (because they are immediate or
passdone() if they are queued), they are put on the done
queue.
If we get the final close on the device before all pending
I/O is complete, all active I/O is moved to the abandoned
queue and we increment the peripheral reference count so
that the peripheral driver instance doesn't go away before
all pending I/O is done.
The new passcreatezone() function is called on the first
call to the CAMIOQUEUE ioctl on a given device to allocate
the UMA zones for I/O requests and S/G list buffers. This
may be good to move off to a taskqueue at some point.
The new passmemsetup() function allocates memory and
scatter/gather lists to hold the user's data, and copies
in any data that needs to be written. For virtual pointers
(CAM_DATA_VADDR), the kernel buffer is malloced from the
new pass(4) driver malloc bucket. For virtual
scatter/gather lists (CAM_DATA_SG), buffers are allocated
from a new per-pass(9) UMA zone in MAXPHYS-sized chunks.
Physical pointers are passed in unchanged. We have support
for up to 16 scatter/gather segments (for the user and
kernel S/G lists) in the default struct pass_io_req, so
requests with longer S/G lists require an extra kernel malloc.
The new passcopysglist() function copies a user scatter/gather
list to a kernel scatter/gather list. The number of elements
in each list may be different, but (obviously) the amount of data
stored has to be identical.
The new passmemdone() function copies data out for the
CAM_DATA_VADDR and CAM_DATA_SG cases.
The new passiocleanup() function restores data pointers in
user CCBs and frees memory.
Add new functions to support kqueue(2)/kevent(2):
passreadfilt() tells kevent whether or not the done
queue is empty.
passkqfilter() adds a knote to our list.
passreadfiltdetach() removes a knote from our list.
Add a new function, passpoll(), for poll(2)/select(2)
to use.
Add devstat(9) support for the queued CCB path.
sys/cam/ata/ata_da.c:
Add support for the BIO_VLIST bio type.
sys/cam/cam_ccb.h:
Add a new enumeration for the xflags field in the CCB header.
(This doesn't change the CCB header, just adds an enumeration to
use.)
sys/cam/cam_xpt.c:
Add a new function, xpt_setup_ccb_flags(), that allows specifying
CCB flags.
sys/cam/cam_xpt.h:
Add a prototype for xpt_setup_ccb_flags().
sys/cam/scsi/scsi_da.c:
Add support for BIO_VLIST.
sys/dev/md/md.c:
Add BIO_VLIST support to md(4).
sys/geom/geom_disk.c:
Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size
limiting code in g_disk_start() a bit.
sys/kern/subr_bus_dma.c:
Change _bus_dmamap_load_vlist() to take a starting offset and
length.
Add a new function, _bus_dmamap_load_pages(), that will load a list
of physical pages starting at an offset.
Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios.
Allow unmapped I/O to start at an offset.
sys/kern/subr_uio.c:
Add two new functions, physcopyin_vlist() and physcopyout_vlist().
sys/pc98/include/bus.h:
Guard kernel-only parts of the pc98 machine/bus.h header with
#ifdef _KERNEL.
This allows userland programs to include <machine/bus.h> to get the
definition of bus_addr_t and bus_size_t.
sys/sys/bio.h:
Add a new bio flag, BIO_VLIST.
sys/sys/uio.h:
Add prototypes for physcopyin_vlist() and physcopyout_vlist().
share/man/man4/pass.4:
Document the CAMIOQUEUE and CAMIOGET ioctls.
usr.sbin/Makefile:
Add camdd.
usr.sbin/camdd/Makefile:
Add a makefile for camdd(8).
usr.sbin/camdd/camdd.8:
Man page for camdd(8).
usr.sbin/camdd/camdd.c:
The new camdd(8) utility.
Sponsored by: Spectra Logic
MFC after: 1 week
Previously such LUNs were silently ignored. But while they indeed unable
to process most of SCSI commands, some, like RTPG, they still can.
MFC after: 1 month
This prevents BIO_DELETE requests getting stuck in the TRIM queue which
results in a panic on shutdown due to outstanding requests.
PR: 194606
Reported by: Guido Falsi
Reviewed by: mav
MFC after: 3 days
Sponsored by: Multiplay
in userland rename in-kernel getenv()/setenv() to kern_setenv()/kern_getenv().
This fixes a namespace collision with libc symbols.
Submitted by: kmacy
Tested by: make universe
that's ATAPI specific. Instead, skip to PROBE_SET_MULTI instead for
non ATAPI protocols. The prior code incorrectly terminated the probe
with a break, rather than arranging for probedone to get called. This
caused panics or worse on some systems.
that's only mostly similar. Specifically word 78 bits are defined for
IDENTIFY DEVICE as
5 Supports Hardware Feature Control
while a IDENTIFY PACKET DEVICE defines them as
5 Asynchronous notification supported
Therefore, only pay attention to bit 5 when we're talking to ATAPI
devices (we don't use the hardware feature control at this time).
Ignore it for ATA devices. Remove kludge that papered over this issue
for Samsung SATA SSDs, since Micron drives also have the bit set and
the error was caused by this bad interpretation of the spec (which is
quite easy to do, since bits aren't normally overlapping like this).
requests on the trim_queue, even for the CFA ERASE. This allows us, in
the future, to collapse adjacent requests. Since CFA ERASE is only for
CF cards, and it is so restrictive in what it can do, the collapse
code is not presently here. This also brings the ada driver more in
line with the da driver's treatment of BIO_DELETEs.
Reviewed by: mav@
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
trims to the device assumes the list is sorted. Don't apply the
optimization of not sorting the queue when we have SSDs to the
delete_queue, since it causes more discard traffic to the drive. While
one could argue that the higher levels should coalesce the trims,
that's not done today, so some optimization at this level is needed.
CR: https://phabric.freebsd.org/D142
- Logical sector size is measured in words, not bytes.
- If physical sector is not bigger then logical sector, it does not mean
it should be set equal to 512 bytes, but set to logical sector.
PR: misc/187269
Submitted by: Ravi Pokala <rpokala@panasas.com>
MFC after: 1 week
- Replace ordered_tag_count counter with single flag;
- From da remove outstanding_cmds counter, duplicating pending_ccbs list;
- From da_softc remove unused links field.