reference counter array for mbuf clusters. I don't know
how this got past early testing nor how it survived so long
without getting caught. If anyone was seeing really really
bizarre memory corruption in a few mbufs this would be why.
#if'ed out for a while. Complete the deed and tidy up some other bits.
We need to be able to call this stuff from outer edges of interrupt
handlers for devices that have the ISR bits in pci config space. Making
the bios code mpsafe was just too hairy. We had also stubbed it out some
time ago due to there simply being too much brokenness in too many systems.
This adds a leaf lock so that it is safe to use pci_read_config() and
pci_write_config() from interrupt handlers. We still will use pcibios
to do interrupt routing if there is no acpi.. [yes, I tested this]
Briefly glanced at by: imp
sched_lock around accesses to p_stats->p_timer[] to avoid a potential
race with hardclock. getitimer(), setitimer() and the realitexpire()
callout are now Giant-free.
add a signal to a mailbox's pending set.
- Add a new function, thread_signal_upcall(), this causes the current thread
to upcall so that we can deliver pending signals.
Reviewed by: mini
I was in two minds as to where to put them in the first case..
I should have listenned to the other mind.
Submitted by: parts by davidxu@
Reviewed by: jeff@ mini@
queue lock already held.
- In getblk() and flushbufqueues() use bremfreel() while we still have the
buf queue lock held to keep the lists consistent.
- Add LK_NOWAIT to two cases where we're essentially asserting that the bufs
are not locked while acquiring the locks. This will make sure that we get
the appropriate panic() and not another one for sleeping with a lock held.
- Mark the process leader as having an advisory lock
- Check if process leader is marked as having advisory lock when
closing file
- Check that file is still open after lock has been obtained
- Don't allow file descriptor table sharing between processes
with different leaders
PR: 10265
Reviewed by: alfred
freebsd4_sigaction() and osigaction() instead of around the whole
body of those functions. They now no longer hold Giant around calls
to copyin() and copyout(), and it is slightly more obvious what
Giant is protecting.
barrier between free'ing filedesc structures. Basically if you want to
access another process's filedesc, you want to hold this mutex over the
entire operation.
opposed to returning the top of the old chain when there was one and
the top of the newly allocated chain if there was no old chain.
Actually, it should be noted that prior to this fix, although the
comment above m_getm() advertised that m_getm() would return the
top of the old chain (if an old chain was being passed in) it
actually [wrongly] was returning the tail mbuf in the old chain
instead. This is a bug but since the one use of m_getm() in
the tree luckily did not depend on the behavior, it happened
to work out without notice.
Harti Brandt pointed out that the advertised behavior was actually
not the real behavior and so this change makes m_getm() ALWAYS
return the newly allocated chain (and fixes the comment). This
is less confusing and is the best course of action as then the
caller is always able to have both a reference to the top of
the original chain (because it's passing it in in the call) and
a reference to the newly attached chain. Although the API is
slightly modified, I don't think that any third-party code uses
m_getm() and if it does, it surely can't be working properly
because the old behavior was bogus.
API bug pointed out by: Harti Brandt <brandt@fokus.fraunhofer.de>
To fix scsi, don't wait for ithreads if we're dumping, it makes the
debugger sad.
To fix ata, use what appears to be a polling method if we're dumping,
I stole this from tmm but added code to ensure that this change is
only in effect while dumping.
Tested by: des
The locking here needs to be revisited, but this ought to get rid of the
LOR messages that people are complaining about for now. I imagine either
I or someone else interested with smp will eventually clear this up.
- Use the ratio of kg_runtime / kg_slptime to determine our dynamic priority.
- Scale kg_runtime and kg_slptime back when the sum of the two exceeds
SCHED_SLP_RUN_MAX. This allows us to slowly forget old behavior.
- Scale back the runtime and slptime in fork so that the new process has the
same ratio but much less accumulated time. This causes new behavior to be
noticed more quickly.